YOLOv8改进 | 模块缝合 | C2f 融合REPVGGOREPA提升检测性能【详细步骤 完整代码】

news2025/1/13 2:44:34

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有100+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


结构重参数化技术在计算机视觉领域日益受到重视,它能在不增加推理成本的情况下提升深度学习模型性能。本文将介绍了一种C2f融合REPVGGOREPA的方法,通过将复杂训练模块简化为单次卷积来降低训练成本。能显著减少内存消耗和加快训练速度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转  

目录

 1. 原理

2. 将C2f_REPVGGOREPA添加到yolov8网络中

2.1 C2f_REPVGGOREPA代码实现

2.2 C2f_REPVGGOREPA的神经网络模块代码解析

2.3 更改init.py文件

2.4 添加yaml文件

2.5 注册模块

2.6 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


 1. 原理

论文地址:Online Convolutional Re-parameterization——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

REPVGG和OREPA的主要原理可以概括为结构重参数化的应用与优化。以下是两者的主要原理解释:

1. REPVGG的原理

REPVGG是一种基于VGG的卷积神经网络,应用了结构重参数化(Structural Re-parameterization)的概念。具体来说,它在训练阶段使用复杂的多分支结构以提升模型的表现力,而在推理阶段,将这些复杂的结构整合为一个简单的VGG-like卷积块,从而在保持高精度的同时提高了推理效率。这种方法在训练阶段引入了更多的计算成本,但通过在推理阶段将这些成本“折叠”成一个简单的结构,从而在推理时保持较高的效率。

2. OREPA的原理

OREPA(Online Convolutional Re-parameterization)是对传统结构重参数化方法的改进。它主要通过以下方式优化了训练效率:

  • 在线重参数化(Online Re-parameterization):OREPA在训练过程中简化了复杂的训练结构,通过去除非线性层(如Batch Normalization),引入线性缩放层来替代,从而在保持多分支优化方向的多样性的同时,实现了在线的结构简化。

  • 块压缩(Block Squeezing):在OREPA中,经过线性化后的块可以在训练过程中被压缩为单个卷积核,从而显著减少训练时的计算和存储开销。这使得OREPA在保持高精度的同时,能够显著提高训练效率并降低显存占用。

主要区别

  • 结构设计:REPVGG的多分支结构在训练阶段引入了更高的计算复杂度,而OREPA通过去除非线性层并引入线性缩放层,使得其训练时的计算开销大大降低。

  • 训练成本:REPVGG的训练成本较高,而OREPA通过在线重参数化和块压缩,显著降低了训练成本。

总结来说,OREPA通过优化结构重参数化过程中的训练效率,保留了高效的推理能力,并能够在各种计算机视觉任务中提供一致的性能提升。

2. 将C2f_REPVGGOREPA添加到yolov8网络中

2.1 C2f_REPVGGOREPA代码实现

关键步骤一将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的__all__中添加“C2f_REPVGGOREPA”


import torch, math
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np

class SEAttention(nn.Module):
    def __init__(self, channel=512,reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )
 
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

def transI_fusebn(kernel, bn):
    gamma = bn.weight
    std = (bn.running_var + bn.eps).sqrt()
    return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std

def transVI_multiscale(kernel, target_kernel_size):
    H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
    W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
    return F.pad(kernel, [W_pixels_to_pad, W_pixels_to_pad, H_pixels_to_pad, H_pixels_to_pad])

class OREPA(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=None,
                 groups=1,
                 dilation=1,
                 act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False,
                 single_init=False, 
                 weight_only=False,
                 init_hyper_para=1.0, init_hyper_gamma=1.0):
        super(OREPA, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
        self.weight_only = weight_only
        
        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups

        self.stride = stride
        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation

        if deploy:
            self.orepa_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:

            self.branch_counter = 0

            self.weight_orepa_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels / self.groups), kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_origin, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.weight_orepa_avg_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            self.weight_orepa_pfir_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_avg_conv, a=0.0)
            init.kaiming_uniform_(self.weight_orepa_pfir_conv, a=0.0)
            self.register_buffer(
                'weight_orepa_avg_avg',
                torch.ones(kernel_size,
                        kernel_size).mul(1.0 / kernel_size / kernel_size))
            self.branch_counter += 1
            self.branch_counter += 1

            self.weight_orepa_1x1 = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_1x1, a=0.0)
            self.branch_counter += 1

            if internal_channels_1x1_3x3 is None:
                internal_channels_1x1_3x3 = in_channels if groups <= 4 else 2 * in_channels

            if internal_channels_1x1_3x3 == in_channels:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(in_channels, int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (in_channels, int(in_channels / self.groups), 1, 1))
                for i in range(in_channels):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)

            else:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(internal_channels_1x1_3x3,
                                int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (internal_channels_1x1_3x3, int(in_channels / self.groups), 1, 1))
                for i in range(internal_channels_1x1_3x3):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)
                #init.kaiming_uniform_(
                    #self.weight_orepa_1x1_kxk_conv1, a=math.sqrt(0.0))
            self.weight_orepa_1x1_kxk_conv2 = nn.Parameter(
                torch.Tensor(out_channels,
                            int(internal_channels_1x1_3x3 / self.groups),
                            kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_1x1_kxk_conv2, a=math.sqrt(0.0))
            self.branch_counter += 1

            expand_ratio = 8
            self.weight_orepa_gconv_dw = nn.Parameter(
                torch.Tensor(in_channels * expand_ratio, 1, kernel_size,
                            kernel_size))
            self.weight_orepa_gconv_pw = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels * expand_ratio / self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_orepa_gconv_dw, a=math.sqrt(0.0))
            init.kaiming_uniform_(self.weight_orepa_gconv_pw, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
            if weight_only is False:
                self.bn = nn.BatchNorm2d(self.out_channels)

            self.fre_init()

            init.constant_(self.vector[0, :], 0.25 * math.sqrt(init_hyper_gamma))  #origin
            init.constant_(self.vector[1, :], 0.25 * math.sqrt(init_hyper_gamma))  #avg
            init.constant_(self.vector[2, :], 0.0 * math.sqrt(init_hyper_gamma))  #prior
            init.constant_(self.vector[3, :], 0.5 * math.sqrt(init_hyper_gamma))  #1x1_kxk
            init.constant_(self.vector[4, :], 1.0 * math.sqrt(init_hyper_gamma))  #1x1
            init.constant_(self.vector[5, :], 0.5 * math.sqrt(init_hyper_gamma))  #dws_conv

            self.weight_orepa_1x1.data = self.weight_orepa_1x1.mul(init_hyper_para)
            self.weight_orepa_origin.data = self.weight_orepa_origin.mul(init_hyper_para)
            self.weight_orepa_1x1_kxk_conv2.data = self.weight_orepa_1x1_kxk_conv2.mul(init_hyper_para)
            self.weight_orepa_avg_conv.data = self.weight_orepa_avg_conv.mul(init_hyper_para)
            self.weight_orepa_pfir_conv.data = self.weight_orepa_pfir_conv.mul(init_hyper_para)

            self.weight_orepa_gconv_dw.data = self.weight_orepa_gconv_dw.mul(math.sqrt(init_hyper_para))
            self.weight_orepa_gconv_pw.data = self.weight_orepa_gconv_pw.mul(math.sqrt(init_hyper_para))

            if single_init:
                #   Initialize the vector.weight of origin as 1 and others as 0. This is not the default setting.
                self.single_init()  

    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size,
                                    self.kernel_size)
        half_fg = self.out_channels / 2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi * (h + 0.5) *
                                                         (i + 1) / 3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi * (w + 0.5) *
                                                         (i + 1 - half_fg) / 3)

        self.register_buffer('weight_orepa_prior', prior_tensor)

    def weight_gen(self):
        weight_orepa_origin = torch.einsum('oihw,o->oihw',
                                          self.weight_orepa_origin,
                                          self.vector[0, :])

        weight_orepa_avg = torch.einsum('oihw,hw->oihw', self.weight_orepa_avg_conv, self.weight_orepa_avg_avg)
        weight_orepa_avg = torch.einsum(
             'oihw,o->oihw',
             torch.einsum('oi,hw->oihw', self.weight_orepa_avg_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_avg_avg), self.vector[1, :])


        weight_orepa_pfir = torch.einsum(
            'oihw,o->oihw',
            torch.einsum('oi,ohw->oihw', self.weight_orepa_pfir_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_prior), self.vector[2, :])

        weight_orepa_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            weight_orepa_1x1_kxk_conv1 = (self.weight_orepa_1x1_kxk_idconv1 +
                                        self.id_tensor).squeeze(3).squeeze(2)
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            weight_orepa_1x1_kxk_conv1 = self.weight_orepa_1x1_kxk_conv1.squeeze(3).squeeze(2)
        else:
            raise NotImplementedError
        weight_orepa_1x1_kxk_conv2 = self.weight_orepa_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_orepa_1x1_kxk_conv1.size()
            o, tg, h, w = weight_orepa_1x1_kxk_conv2.size()
            weight_orepa_1x1_kxk_conv1 = weight_orepa_1x1_kxk_conv1.view(
                g, int(t / g), ig)
            weight_orepa_1x1_kxk_conv2 = weight_orepa_1x1_kxk_conv2.view(
                g, int(o / g), tg, h, w)
            weight_orepa_1x1_kxk = torch.einsum('gti,gothw->goihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2).reshape(
                                                  o, ig, h, w)
        else:
            weight_orepa_1x1_kxk = torch.einsum('ti,othw->oihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2)
        weight_orepa_1x1_kxk = torch.einsum('oihw,o->oihw', weight_orepa_1x1_kxk, self.vector[3, :])

        weight_orepa_1x1 = 0
        if hasattr(self, 'weight_orepa_1x1'):
            weight_orepa_1x1 = transVI_multiscale(self.weight_orepa_1x1,
                                                self.kernel_size)
            weight_orepa_1x1 = torch.einsum('oihw,o->oihw', weight_orepa_1x1,
                                           self.vector[4, :])

        weight_orepa_gconv = self.dwsc2full(self.weight_orepa_gconv_dw,
                                          self.weight_orepa_gconv_pw,
                                          self.in_channels, self.groups)
        weight_orepa_gconv = torch.einsum('oihw,o->oihw', weight_orepa_gconv,
                                        self.vector[5, :])

        weight = weight_orepa_origin + weight_orepa_avg + weight_orepa_1x1 + weight_orepa_1x1_kxk + weight_orepa_pfir + weight_orepa_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups, groups_conv=1):

        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t / groups)
        i = int(ig * groups)
        ogc = int(o / groups_conv)
        groups_gc = int(groups / groups_conv)
        weight_dw = weight_dw.view(groups_conv, groups_gc, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(ogc, groups_conv, groups_gc, tg)

        weight_dsc = torch.einsum('cgtihw,ocgt->cogihw', weight_dw, weight_pw)
        return weight_dsc.reshape(o, int(i/groups_conv), h, w)

    def forward(self, inputs=None):
        if hasattr(self, 'orepa_reparam'):
            return self.nonlinear(self.orepa_reparam(inputs))
        
        weight = self.weight_gen()

        if self.weight_only is True:
            return weight

        out = F.conv2d(
            inputs,
            weight,
            bias=None,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or1x1_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.orepa_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.orepa_reparam.weight.data = kernel
        self.orepa_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('weight_orepa_origin')
        self.__delattr__('weight_orepa_1x1')
        self.__delattr__('weight_orepa_1x1_kxk_conv2')
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            self.__delattr__('id_tensor')
            self.__delattr__('weight_orepa_1x1_kxk_idconv1')
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            self.__delattr__('weight_orepa_1x1_kxk_conv1')
        else:
            raise NotImplementedError
        self.__delattr__('weight_orepa_avg_avg')  
        self.__delattr__('weight_orepa_avg_conv')
        self.__delattr__('weight_orepa_pfir_conv')
        self.__delattr__('weight_orepa_prior')
        self.__delattr__('weight_orepa_gconv_dw')
        self.__delattr__('weight_orepa_gconv_pw')

        self.__delattr__('bn')
        self.__delattr__('vector')

    def init_gamma(self, gamma_value):
        init.constant_(self.vector, gamma_value)

    def single_init(self):
        self.init_gamma(0.0)
        init.constant_(self.vector[0, :], 1.0)


class OREPA_LargeConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False):
        super(OREPA_LargeConv, self).__init__()
        assert kernel_size % 2 == 1 and kernel_size > 3
        
        padding = autopad(kernel_size, padding, dilation)
        self.stride = stride
        self.padding = padding
        self.layers = int((kernel_size - 1) / 2)
        self.groups = groups
        self.dilation = dilation

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels

        internal_channels = out_channels
        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if deploy:
            self.or_large_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            for i in range(self.layers):
                if i == 0:
                    self.__setattr__('weight'+str(i), OREPA(in_channels, internal_channels, kernel_size=3, stride=1, padding=1, groups=groups, weight_only=True))
                elif i == self.layers - 1:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, out_channels, kernel_size=3, stride=self.stride, padding=1, weight_only=True))
                else:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, internal_channels, kernel_size=3, stride=1, padding=1, weight_only=True))

            self.bn = nn.BatchNorm2d(out_channels)
            #self.unfold = torch.nn.Unfold(kernel_size=3, dilation=1, padding=2, stride=1)

    def weight_gen(self):
        weight = getattr(self, 'weight'+str(0)).weight_gen().transpose(0, 1)
        for i in range(self.layers - 1):
            weight2 = getattr(self, 'weight'+str(i+1)).weight_gen()
            weight = F.conv2d(weight, weight2, groups=self.groups, padding=2)
        
        return weight.transpose(0, 1)
        '''
        weight = getattr(self, 'weight'+str(0))(inputs=None).transpose(0, 1)
        for i in range(self.layers - 1):
            weight = self.unfold(weight)
            weight2 = getattr(self, 'weight'+str(i+1))(inputs=None)

            weight = torch.einsum('akl,bk->abl', weight, weight2.view(weight2.size(0), -1))
            k = i * 2 + 5
            weight = weight.view(weight.size(0), weight.size(1), k, k)
        
        return weight.transpose(0, 1)
        '''

    def forward(self, inputs):
        if hasattr(self, 'or_large_reparam'):
            return self.nonlinear(self.or_large_reparam(inputs))

        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or_large_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.or_large_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.or_large_reparam.weight.data = kernel
        self.or_large_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        for i in range(self.layers):
            self.__delattr__('weight'+str(i))
        self.__delattr__('bn')

class ConvBN(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                             stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
        super().__init__()
        if nonlinear is None:
            self.nonlinear = nn.Identity()
        else:
            self.nonlinear = nonlinear
        if deploy:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                      stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
        else:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                            stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
            self.bn = nn.BatchNorm2d(num_features=out_channels)

    def forward(self, x):
        if hasattr(self, 'bn'):
            return self.nonlinear(self.bn(self.conv(x)))
        else:
            return self.nonlinear(self.conv(x))

    def switch_to_deploy(self):
        kernel, bias = transI_fusebn(self.conv.weight, self.bn)
        conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
                                      stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
        conv.weight.data = kernel
        conv.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('conv')
        self.__delattr__('bn')
        self.conv = conv

class OREPA_3x3_RepVGG(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False):
        super(OREPA_3x3_RepVGG, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups
        padding = autopad(kernel_size, padding, dilation)
        assert padding == kernel_size // 2

        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        self.branch_counter = 0

        self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
        self.branch_counter += 1


        if groups < out_channels:
            self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
            init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
            self.weight_rbr_avg_conv.data
            self.weight_rbr_pfir_conv.data
            self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
            self.branch_counter += 1

        else:
            raise NotImplementedError
        self.branch_counter += 1

        if internal_channels_1x1_3x3 is None:
            internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels   # For mobilenet, it is better to have 2X internal channels

        if internal_channels_1x1_3x3 == in_channels:
            self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
            id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
            for i in range(in_channels):
                id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
            id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
            self.register_buffer('id_tensor', id_tensor)

        else:
            self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
        self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
        self.branch_counter += 1

        expand_ratio = 8
        self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
        self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
        init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
        init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
        self.branch_counter += 1

        if out_channels == in_channels and stride == 1:
            self.branch_counter += 1

        self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
        self.bn = nn.BatchNorm2d(out_channels)

        self.fre_init()

        init.constant_(self.vector[0, :], 0.25)    #origin
        init.constant_(self.vector[1, :], 0.25)      #avg
        init.constant_(self.vector[2, :], 0.0)      #prior
        init.constant_(self.vector[3, :], 0.5)    #1x1_kxk
        init.constant_(self.vector[4, :], 0.5)     #dws_conv


    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
        half_fg = self.out_channels/2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)

        self.register_buffer('weight_rbr_prior', prior_tensor)

    def weight_gen(self):

        weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])

        weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
        
        weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])

        weight_rbr_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
            weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
        elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
            weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
        else:
            raise NotImplementedError
        weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_rbr_1x1_kxk_conv1.size()
            o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
            weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
            weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
            weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
        else:
            weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)

        weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])

        weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
        weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])    

        weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups):
        
        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t/groups)
        i = int(ig*groups)
        weight_dw = weight_dw.view(groups, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(o, groups, tg)
        
        weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
        return weight_dsc.view(o, i, h, w)

    def forward(self, inputs):
        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)

        return self.nonlinear(self.bn(out))

class RepVGGBlock_OREPA(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False, use_se=False):
        super(RepVGGBlock_OREPA, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels

        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

        assert kernel_size == 3
        assert padding == 1

        self.nonlinearity = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if use_se:
            self.se = SEAttention(out_channels, reduction=out_channels // 16)
        else:
            self.se = nn.Identity()

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = OREPA_3x3_RepVGG(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=1)
            self.rbr_1x1 = ConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, groups=groups, dilation=1)

    def forward(self, inputs):
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        out1 = self.rbr_dense(inputs)
        out2 = self.rbr_1x1(inputs)
        out3 = id_out
        out = out1 + out2 + out3

        return self.nonlinearity(self.se(out))


    #   Optional. This improves the accuracy and facilitates quantization.
    #   1.  Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
    #   2.  Use like this.
    #       loss = criterion(....)
    #       for every RepVGGBlock blk:
    #           loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
    #       optimizer.zero_grad()
    #       loss.backward()

    # Not used for OREPA
    def get_custom_L2(self):
        K3 = self.rbr_dense.weight_gen()
        K1 = self.rbr_1x1.conv.weight
        t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
        t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()

        l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum()      # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
        eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1                           # The equivalent resultant central point of 3x3 kernel.
        l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum()        # Normalize for an L2 coefficient comparable to regular L2.
        return l2_loss_eq_kernel + l2_loss_circle

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1,1,1,1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if not isinstance(branch, nn.BatchNorm2d):
            if isinstance(branch, OREPA_3x3_RepVGG):
                kernel = branch.weight_gen()
            elif isinstance(branch, ConvBN):
                kernel = branch.conv.weight
            else:
                raise NotImplementedError
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
                                     kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
                                     padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_dense')
        self.__delattr__('rbr_1x1')
        if hasattr(self, 'rbr_identity'):
            self.__delattr__('rbr_identity')

class Bottleneck_REPVGGOREPA(Bottleneck):
    """Standard bottleneck with DCNV2."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expand
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        if k[0] == 1:
            self.cv1 = Conv(c1, c_, 1)
        else:
            self.cv1 = RepVGGBlock_OREPA(c1, c_, 3)
        
        self.cv2 = RepVGGBlock_OREPA(c_, c2, 3, groups=g)

class C3_REPVGGOREPA(C3):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(Bottleneck_REPVGGOREPA(c_, c_, shortcut, g, k=(1, 3), e=1.0) for _ in range(n)))

class C2f_REPVGGOREPA(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Bottleneck_REPVGGOREPA(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

2.2 C2f_REPVGGOREPA的神经网络模块代码解析

这段代码定义了一个名为 C2f_REPVGGOREPA 的自定义神经网络模块类,它继承自另一个类 C2f。以下是对该代码的详细解析:

1. 类的定义与继承

class C2f_REPVGGOREPA(C2f):
  • C2f_REPVGGOREPA 继承自 C2f 类,这意味着 C2f_REPVGGOREPA 将拥有 C2f 的所有属性和方法,但可以重写或扩展这些属性和方法。

  • C2f 是父类,它可能定义了一些基础的神经网络结构或功能。

2. 初始化方法

def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    super().__init__(c1, c2, n, shortcut, g, e)
  • __init__ 是初始化方法,当创建 C2f_REPVGGOREPA 类的实例时会自动调用。

  • c1c2 可能表示输入和输出的通道数,n 表示模块重复的次数,shortcut 是是否使用残差连接的标志,g 可能是组卷积的组数,e 可能表示扩展因子。

  • super().__init__(c1, c2, n, shortcut, g, e) 调用了父类 C2f 的初始化方法,确保 C2f_REPVGGOREPA 继承父类的初始化逻辑。

3. 模块列表

self.m = nn.ModuleList(Bottleneck_REPVGGOREPA(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
  • self.m 是一个 nn.ModuleList,用于存储一系列神经网络层或模块。

  • Bottleneck_REPVGGOREPA 是一个自定义的模块(实现了REPVGG和OREPA方法的瓶颈层),每个模块的输入和输出通道数都是 self.cshortcutgk=(3, 3) 是这个模块的参数,其中 k=(3, 3) 可能表示使用的卷积核大小为 3x3,e=1.0 表示扩展因子。

  • for _ in range(n) 表示创建 nBottleneck_REPVGGOREPA 模块并将它们添加到 self.m 中,n 是初始化方法中的参数。

4. 总结

C2f_REPVGGOREPA 类是一个自定义神经网络模块,继承自 C2f。在这个类中,它使用了 Bottleneck_REPVGGOREPA 模块,并通过 nn.ModuleList 将多个这样的模块组合在一起。这种设计允许通过重复使用 Bottleneck_REPVGGOREPA 模块来构建更深的神经网络结构,同时继承并扩展了 C2f 类的功能。

2.3 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数    

然后在下面的__all__中声明函数 

2.4 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/v8下面新建文件yolov8_C2f_REPVGGOREPA.yaml文件,粘贴下面的内容

  • OD【目标检测】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_REPVGGOREPA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_REPVGGOREPA, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_REPVGGOREPA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_REPVGGOREPA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_REPVGGOREPA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_REPVGGOREPA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)
  • Seg【语义分割】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_REPVGGOREPA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_REPVGGOREPA, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_REPVGGOREPA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_REPVGGOREPA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_REPVGGOREPA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_REPVGGOREPA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。不明白的同学可以看这篇文章: yolov8yaml文件解读——点击即可跳转  


# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
max_channels: 512 # max_channels
 
# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
max_channels: 768 # max_channels
 
# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
max_channels: 512 # max_channels

2.5 注册模块

关键步骤四:在task.py的parse_model函数中注册

2.6 执行程序

在train.py中,将model的参数路径设置为yolov8_C2f_REPVGGOREPA.yaml的路径

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/v8/yolov8.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

    🚀运行程序,如果出现下面的内容则说明添加成功🚀 

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1     20736  ultralytics.nn.modules.block.C2f_REPVGGOREPA [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2    146176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    562688  ultralytics.nn.modules.block.C2f_REPVGGOREPA [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1   1169408  ultralytics.nn.modules.block.C2f_REPVGGOREPA [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    330752  ultralytics.nn.modules.block.C2f_REPVGGOREPA [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     85504  ultralytics.nn.modules.block.C2f_REPVGGOREPA [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    306176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1   1202176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [384, 256, 1]
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8_C2f_REPVGGOREPA summary: 345 layers, 5463696 parameters, 5463680 gradients, 6.8 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1PPV4wsq2R89EesnA780fGg?pwd=p27f

 提取码: p27f 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

img

改进后的GFLOPs

5. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

6. 总结

OREPA的主要原理在于通过在线卷积重参数化(Online Convolutional Re-parameterization)优化了传统结构重参数化方法的训练效率。在训练阶段,OREPA首先移除了复杂训练块中的非线性标准化层,替换为线性缩放层,从而保持了各分支优化方向的多样性,同时简化了结构。然后,OREPA将这些线性化的块在训练过程中进一步压缩为单个卷积核,从而显著降低了计算和存储开销。这一过程不仅大幅度减少了训练成本,还保留了模型的高表现力,使得在推理阶段能够实现高效且精准的模型部署。这种方法特别适用于需要在有限计算资源下执行的场景,如实时推理任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2105017.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

记一种常用的实时数据同步方案:Canal+Kafka+Flume

记一种常用的实时数据同步方案&#xff1a;CanalKafkaFlume 在当今数据驱动的业务环境中&#xff0c;数据同步是确保系统间数据一致性的关键环节。一种高效、稳定且可扩展的数据同步方案对于支撑企业的数据处理和分析需求至关重要。本文将介绍一种结合了Canal、Kafka和Flume的…

【unity游戏开发】Blender导出到Unity,带texture

【背景】 上一篇完成了将Mixamo的动画应用到blender的fbx模型中。但是默认配置导出fbx又导入Unity后发现Texture都没了(mesh和rig都在)。如何将Texture也一并导入呢? 【要点】 Blender导出后的FBX展开Mesh的名称不是文件名称,而是同Blender中的Mesh名称。可以根据这一点…

【案例66】支付指令客户端崩溃分析全过程

问题现象 月底&#xff0c;需要给人员开工资&#xff0c;但是财务人员在点击【支付状态指令】节点&#xff0c;点击状态确认后&#xff0c;系统直接崩溃&#xff0c;页面都卡掉。人员已经2天未发工资&#xff0c;情况比较紧急。 更改Uclient模式从分离模式改为嵌入模式&#x…

【linux002】目录操作命令篇 - ls 命令

文章目录 1、基本用法2、常见选项3、举例演示4、注意事项 ls 命令在 Linux 中用于列出目录内容。它有许多选项和参数可以用来调整显示的格式和内容。 1、基本用法 ls [选项] [文件或目录]2、常见选项 -a 或 --all&#xff1a;显示所有文件&#xff0c;包括以点.开头的隐藏文件…

【最新华为OD机试E卷】最左侧冗余覆盖子串(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,…

第一个Java程序 - Java学习日记 DAY1

第一个Java程序 在文件夹中&#xff0c;新建一个文本文件 重命名为&#xff1a;helloworld.java 用记事本打开此文件&#xff0c;编写第一行 此时&#xff0c;我们创建了一个公开的类&#xff0c;类名叫helloworld&#xff0c;需要注意类名要和文件名的名字一致 第二行是公开…

MySQL record

更改密码&#xff1a; alter user rootlocalhost identified with mysql_native_password by ‘123456’; 注意&#xff1a; 在命令行方式下&#xff0c;每条MySQL的命令都是以分号结尾的&#xff0c;如果不加分号&#xff0c;MySQL会继续等待用户输入命令&#xff0c;直到MyS…

10.7 URL

万维网 真题

前端面试体——项目介绍以及SPA介绍

谈谈你开发的项目背景与、架构和技术栈 项目背景 假设我们正在开发一个名为“智慧旅游助手”的Web平台。该平台旨在为用户提供一站式的旅游服务&#xff0c;包括目的地推荐、酒店预订、行程规划、在线购票&#xff08;如门票、机票&#xff09;、旅游攻略分享以及基于地理位置…

电脑图片只显示图标不显示图片,但是可以打开看,就是不能预览

电脑图片只显示图标不显示图片&#xff0c;但是可以打开看&#xff0c;就是不能预览 例如&#xff1a;不能显示出图片内容 解决方法&#xff1a;我的电脑&#xff08;计算机&#xff09;-右键-属性-高级系统设置-高级-性能-设置-找到&#xff08;显示缩略图&#xff0c;而不是…

实战赢家:为何传统边缘分割方法比深度学习更有效?附源码+教学+数据

前言 传统的边缘分割方法&#xff0c;如Canny边缘检测和Sobel算子&#xff0c;已经在计算机视觉领域中使用了数十年。这些方法依赖于图像梯度和边缘强度来识别边缘&#xff0c;通过一系列精心设计的滤波器和阈值化步骤来实现高效的边缘检测。虽然这些方法较为简单&#xff0c;…

Linux malloc内存分配实现原理

目录 一、用户进程虚拟内存空间布局 二、malloc工作原理 2.1 malloc实现流程 2.1.1 brk方式申请内存 2.1.2 mmap方式分配内存 2.2 核心代码 2.3 malloc分配物理内存的时机 2.4 malloc分配的实际内存大小 三、虚拟内存与物理内存 3.1 如何建立映射 3.2 分配物理内存 …

传统CV算法——基于 SIFT 特征点检测与匹配实现全景图像拼接

全景图像拼接实现 定义 Stitcher 的类&#xff0c;用于实现两张图片的拼接。使用的技术是基于 SIFT 特征点检测与匹配&#xff0c;以及利用视角变换矩阵来对齐和拼接图像。 import numpy as np import cv2class Stitcher:#拼接函数def stitch(self, images, ratio0.75, repro…

Kubernetes 简介及部署方法

目录 1 Kubernetes 简介及原理 1.1 应用部署方式演变 1.2 容器编排应用 1.3 kubernetes 简介 1.4 K8S的设计架构 1.5 K8S 各组件之间的调用关系 1.6 K8S 的 常用名词感念 1.7 k8S的分层架构 2 K8S 集群环境搭建 2.1 k8s 中容器的管理方式 2.2 k8s中使用的几种管理容器的介绍 3 …

欧洲应用市场的特点

欧洲应用市场是一个充满活力和多样性的景观&#xff0c;其特点是复杂性和巨大的潜力。仅在27个欧盟&#xff08;EU&#xff09;国家就有5亿多人&#xff0c;该地区为希望扩大影响力的应用程序开发人员和企业提供了重要机会。然而&#xff0c;进入这个市场需要了解其独特的特征&…

幻觉问题综述

https://arxiv.org/pdf/2202.03629 分类 内在幻觉&#xff1a;生成的输出与源内容相矛盾 外部幻觉&#xff1a;生成的输出无法从源内容中验证 数据引发的幻觉&#xff08;来源不同引发分歧&#xff09; 训练和推理中的幻觉&#xff08;编码器不能很好的表征&#xff0c;解码…

【云原生-Docker】docker、docker-compose离线安装【包括dokcer、docker-compose资源下载】

资源资源下载在线下载百度网盘下载csdn下载 解压上传文件 配置系统配置配置 docker-compose安装验证 资源 资源下载 在线下载 下载地址&#xff1a;https://download.docker.com/linux/static/stable/x86_64/根据不同系统版本下载不同的docker版本在线下载&#xff1a;wget …

网络编程 0904作业

作业 1、多进程多线程并发服务器&#xff0c;再实现一遍&#xff08;重点模型&#xff09; 多进程并发服务器 多进程服务器 PIDserver.c 代码 #include <myhead.h> #define SERPORT 7777 #define SERIP "192.168.19.128" #define BACKLOG 10void hande(int…

【数据结构与算法 | 搜索二叉树篇 力扣篇】力扣530, 501

1. 力扣530&#xff1a;二叉搜索树的最小绝对差 1.1 题目&#xff1a; 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&#xff0c;其数值等于两值之差的绝对值。 示例 1&#xff1a; 输入&#xff1a;root [4,…

【人工智能】Transformers之Pipeline(十五):总结(summarization)

​​​​​​​ 目录 一、引言 二、总结&#xff08;summarization&#xff09; 2.1 概述 2.2 BERT与GPT的结合—BART 2.3 应用场景​​​​​​​ 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 ​​​​​​​ 2.4.3 pipeline返回参…