观测云核心技术解密:eBPF Tracing 实现原理

news2025/1/10 20:21:36

前言

eBPF 是一种强大的内核技术,允许在内核中安全地执行自定义代码。通过 eBPF,开发者可以在不修改内核源码的情况下,对内核功能进行扩展和监控。eBPF Tracing 利用这一技术,对系统调用、内核函数等进行跟踪,从而实现对应用行为的深入洞察。

与传统的监控方式相比,eBPF Tracing 具有以下优势:

  • 无侵入性:无需修改应用代码即可进行监控。
  • 高性能:在内核层面执行,减少了对应用性能的影响。
  • 细粒度:可以精确到单个系统调用或内核函数的监控。

eBPF(网络)链路实现

实现由三部分构成:

  1. eBPF 探针程序
  2. 解析来自 BPF Map 的网络请求数据、线程(协程)跟踪与 eBPF Span 生成
  3. 链接来自所有节点的汇总 eBPF Span (以下简称 eSpan) 生成链路

eBPF 探针程序

eBPF 探针用于获取程序读写 socket fd 的网络数据,并通过 BPF Map 发送给用户空间的程序进行协议解析。

Linux syscall 函数触发时 eBPF 探针将读取 buf 参数的内容写入 BPF Map,参考 syscall 如下:

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
ssize_t readv(int fd, const struct iovec *iov, int iovcnt);
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                        const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);
...

写入 BPF Map 的数据将记录触发的 syscall 函数及时间、TCP 连接信息、线程/协程信息以及 Linux syscall 的 buf 参数的部分 payload,以下为结构体:

struct network_data
{
    struct
    {
        __u64 ts;                        // 函数调用开始时间
        __u64 ts_tail;                   // 函数调用结束时间
        __u64 tid_utid;                  // 内核线程、用户线程 id
        __u8 comm[KERNEL_TASK_COMM_LEN]; // task comm
        struct
        {
            __u64 sk;      // sock addr
            __u32 ktime;   // kernel time
            __u32 prandom; // random number
        } uni_id;          // 该网络连接的唯一标识 id
        struct
        {
            __be32 saddr[4]; // src(proc self) ip address; Use the last element to store the IPv4 address
            __be32 daddr[4]; // dst ip address
            __u16 sport;     // src(proc self) port
            __u16 dport;     // dst port
            __u32 pid;
            __u32 netns; // network namespace inode. (`stat -L /proc/<pid>/ns/net` or `lsns -t net`)
            __u32 meta;  // first byte: 0x0000|IPv4 or 0x0001|IPv6; second byte 0x0000|TCP or 0x0100|UDP; ...
        } conn;          // 连接信息
        __u32 tcp_seq;   // first byte tcp seq

        __u16 _pad0;   // 内存对齐填充
        __u16 func_id; // 函数编号

        __s32 fd;       // socket fd
        __s32 buf_len;  // 读写的网络数据字节数
        __s32 act_size; // 实际采集的 payload 的字节数
        __u32 index;    // 自增,用于标记进程对 socket fd 读写函数调用顺序
    } meta;                       // 网络数据 meta
    __u8 payload[L7_BUFFER_SIZE]; // 网络数据 payload
};

由第二部分的 Agent 实现 eBPF 探针程序的加载和卸载,工作示意图:

网络请求解析、线程跟踪与 eSpan 生成

DataKit-eBPF 程序从 BPF Map 获取网络数据,解析网络协议,根据进程和线程信息构建线程跟踪模型。

其构成主要包含:

  • 采集:
    收集来自 BPF Map 的网络数据等;加载 eBPF 探针程序,attach 到相应的 syscall 函数
  • 解析:
    • 建立进程的线程-网络请求时序模型,通过为应用内关联网络请求(IN/OUT)提供线程跟踪 ID 实现进程内跟踪;
    • 检测网络数据里的网络协议,识别到 HTTP、Redis、MySQL 等协议后进入解析模式,并进行网络协议/进程过滤等;
    • 解析网络协议,采集网络请求,生成请求数据,附加根据 TCP 序列号生成跨进程网络跟踪 ID、附加 Otel/DDTrace 等的链路传播信息(如果有);
  • 生成:
    向生成请求数据中注入线程跟踪 ID,进一步生成 eBPF Span 和生成网络请求聚合数据。
  • 发送:
    由于当前 eBPF Span 中没有建立跨进程调用的父子关系,需要将所有节点的 eSpan 发送至同一个用于 eSpan 链接的 DataKit 或 DataKit-ELinker 服务, 如图:

eSpan 链接

该部分接收来自所有节点的 eSpan 数据,用于建立这些来自多个节点的 eSpan 的跨进程应用调用关系,实现生成完整的链路。

其构成主要包含:

  • 接收 eSpan 并缓存 N 个链接周期(该周期可根据单次应用调用链路的总耗时调参)的 eSpan 数据
  • 按链接周期取数据,加工 eSpan,根据 eSpan 中的进程内跟踪 ID 和跨进程网络跟踪 ID 完成 eSpan 间的链接
  • 采样,该采样为尾部采样;同时,可根据 Otel/DDtrace 等通过网络传播的链路信息中的采样信息进行采样
  • 上传 eBPF 链路数据到观测云

实现效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2102769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

X86架构(六)——移位指令与无条件转移指令

移位指令 shr 逻辑右移 逻辑右移指令会将操作数连续地向右移动指定的次数&#xff0c;移出的比特被移到标志寄存器的CF位&#xff0c;左边空出来的位置用0填充 ;目的操作数可以是8位或16位的通用寄存器或者内存单元 ;源操作数可以是数字1、8位立即数或者寄存器CL shr r/m8, …

7、Django Admin删除默认应用程序

admin文件 from django.contrib.auth.models import User, Groupadmin.site.unregister(User) admin.site.unregister(Group) 显示效果&#xff1a; 前 后

使用vscode debug cpp/python混合编程的程序(从python调用的C++编译的dll)

使用vscode debug cpp/python混合编程的程序&#xff08;从python调用的C编译的dll&#xff09; 1. 安装插件 Python C Debugger https://marketplace.visualstudio.com/items?itemNamebenjamin-simmonds.pythoncpp-debug 2. 在.vscode/launch.json中增加配置 拷贝自 https:…

K8S日志收集

本章主要讲解在 Kubernetes 集群中如何通过不同的技术栈收集容器的日志&#xff0c;包括程序直接输出到控制台日志、自定义文件日志等。 一、有哪些日志需要收集 为了更加方便的处理异常&#xff0c;日志的收集与分析极为重要&#xff0c;在学习日志收集之前&#xff0c;需要知…

矮草坪渲染尝试

本来说写unity里的&#xff0c;由于three测试方便&#xff0c;先试试three 这个图片是目标效果 可以看见草很矮&#xff0c;很密集&#xff0c;如果用instance来绘制的话&#xff0c;遭不住的 忽然发现这个效果很像绒毛效果 于是找了博客康康 https://zhuanlan.zhihu.com/p/256…

第二证券:涨停潮!传手机将使用钛金属外壳?

今天早盘&#xff0c;银行股再度重挫&#xff0c;导致上证指数、上证50纷乱创出阶段性新低&#xff0c;上证指数跌破2800点&#xff0c;小盘成长股则大面积反弹&#xff0c;创业板指、科创50等股指飘红。 盘面上&#xff0c;新式烟草、钛金属、锂矿、玻璃基板等板块涨幅居前&a…

glsl着色器学习(七)

先了解一个矩阵库twgl/m4 是一个4x4 矩阵数学转换函数的库 normalize(a, dst) 将一个向量除以它的欧几里得长度&#xff0c;归一化后返回参数"a"是一个vec3&#xff08;三维向量&#xff09;参数"dst"是用来接收结果的&#xff0c;如果不传&#xff0c;则…

【嵌入式体系结构复习资料】

选择&#xff1a; 1. 以下哪个不是嵌入式系统设计的主要目标&#xff1f;( D ) A&#xff0e;低成本 B.低功耗 C.实时要求高 D.超高性能 2&#xff0e; 嵌入式系统有别于其他系统的最大特点是&#xff08;A &#xff09;。 A&#xff0e;嵌入专用 B.高可靠 C.…

集成电路学习:什么是LCD液晶显示器

一、LCD&#xff1a;液晶显示器 LCD&#xff0c;全称Liquid Crystal Display&#xff0c;即液晶显示器&#xff0c;是一种平面超薄的显示设备。它由一定数量的彩色或黑白像素组成&#xff0c;放置于光源或者反射面前方。LCD的主要原理是以电流刺激液晶分子产生点、线、面配合背…

mysql 使用 general 开启SQL跟踪功能

查看当前状态 mysql> SHOW VARIABLES LIKE %general%; 启用 临时启用 SET GLOBAL general_logon; SET GLOBAL general_log_file/tmp/general.log; 永久启用 通过修改配置文件来启用,需要重启mysql服务 [mysqld] general_logON general_log_file/tmp/general.log 再次查看状态…

【保姆级教程】如何在Win11上搭建一个GPU环境

CUDA和CUDNN安装 CUDA安装 下载对应cuda环境 下载链接&#xff1a;https://developer.nvidia.com/cuda-downloads&#xff0c;图片下载的是 cuda_12.6.1_560.94_windows.exe 然后一路安装即可&#xff1a; 安装路径如下&#xff1a; CUDNN安装 打开cuDNN下载页面 解压后…

排查SQL Server中的内存不足及其他疑难问题

文章目录 引言I DMV 资源信号灯资源信号灯 DMV sys.dm_exec_query_resource_semaphores( 确定查询执行内存的等待)查询性能计数器什么是内存授予?II DBCC MEMORYSTATUS 查询内存对象III DBCC 命令释放多个 SQL Server 内存缓存 - 临时度量值IV 等待资源池 %ls (%ld)中的内存…

【408DS算法题】034进阶-22年真题_判断顺序存储二叉树是否是BST

Index 真题题目分析实现总结 真题题目 已知非空二叉树T的结点值均为正整数&#xff0c;采用顺序存储方式保存&#xff0c;数据结构定义如下: typedef struct { // MAX_STZE为已定义常量int SqBiTNode[MAX_SIZE]; // 保存二叉树结点值的数组int ElemNum; …

BM3D--Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering

系列文章目录 文章目录 系列文章目录前言稀疏三维变换域协同滤波图像去噪摘要1 引言2 分组和协作过滤A.分组B.按匹配分组C.协同过滤D.基于变换域收缩的协同过滤 3 算法结论 前言 论文地址 如果下载不了可以从 https://download.csdn.net/download/m0_70420861/89708940 获取 …

Pytorch安装 CUDA Driver、CUDA Runtime、CUDA Toolkit、nvcc、cuDNN解释与辨析

Pytorch的CPU版本与GPU版本 Pytorch的CPU版本 仅在 CPU 上运行&#xff0c;适用于没有显卡或仅使用 CPU 的机器。安装方式相对简单&#xff0c;无需额外配置 CUDA 或 GPU 驱动程序。使用方式与 GPU 版相同&#xff0c;唯一不同的是计算将自动在 CPU 上进行。 Pytorch的GPU版…

VBA学习(63):Excel VBA 数据分析展示/ListView控件/Combox组合框控件/CheckBox复选框控件/科目汇总表

前面我们分享了使用ListVeiw进行数据展示&#xff0c;做出“科目汇总表”来&#xff08;Excel VBA 数据分析展示/ListView控件、Excel VBA 数据分析展示/ListView控件/Combox组合框控件/科目汇总表(2)&#xff09;&#xff0c;今天&#xff0c;我们继续完善按月查询、按一级科目…

codesys进行控制虚拟轴运动时出现的一些奇怪bug的解释

codesys进行控制虚拟轴运动时出现的一些奇怪bug的解释 问题描述第一个奇怪的bug&#xff1a;新建的工程没有SoftMotion General Axis Pool选项第二个奇怪的bug&#xff1a;在新建工程SoftMotion General Axis Pool选项时&#xff0c;无法手动添加第三个奇怪的bug&#xff1a;虚…

Spring源码之refresh

1.refesh的核心介绍 在 Spring 框架中&#xff0c;refresh 主要用于刷新应用上下文。这一过程涉及多个重要的步骤&#xff0c;确保 Spring 容器的状态更新、bean 的加载以及资源的初始化。 refresh 方法的主要功能 初始化上下文&#xff1a; refresh 方法会初始化应用上下文&…

【项目实战】智能机械臂协同视觉辅助仓储物流管控平台

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…

9月4日星期三今日早报简报微语报早读

9月4日星期三&#xff0c;农历八月初二&#xff0c;早报微语早读。 1、全球第二批100个地质遗产地公布&#xff0c;中国乌海、自贡、桂林等3地入选&#xff1b; 2、我国科学家在超高纯石墨领域取得重大突破&#xff1b; 3、2024上海百强企业榜单发布&#xff1a;入围门槛105…