STM32:TIM中断配置应用(1)呼吸灯:库函数讲解笔记+代码讲解笔记

news2024/12/23 23:00:35

        声明:本博客为哔哩哔哩up主@江协科技 “STM32入门教程”的听课笔记,仅供学习、参考使用,不得用作其他用途,违者必究。如有版权问题,请联系作者修改。

目录

一、综述

二、TIM库(有关输出比较的函数)

2.1、TIM_OCxInit 输出比较模块配置*

2.2、TIM_CtrlPWMOutputs 高级定时器使能主输出

2.3、TIM_OCStructInit 输出比较结构体赋默认值

2.4、TIM_ForcedOCxConfig 配置强制输出模式

2.5、TIM_OCxPreloadConfig 配置CCR寄存器预装功能

2.6、TIM_OCxFastConfig 配置快速使能

2.7、TIM_ClearOCxRef 外部事件时清除REF信号

2.8、TIM_OCxPolarityConfig && 

        TIM_OCxNPolarityConfig 设置输出比较的极性

2.9、TIM_CCxCmd && TIM_CCxNCmd 单独修改输出使能参数的

2.10、TIM_SelectOCxM 选择输出比较模式

2.11、TIM_SetComparex 更改CCR寄存器的值的函数

2.12TIM结构体讲解

2.12.1、TIM_OCMode 输出比较模式

2.12.2、TIM_OCPolarity 输出比较极性

2.12.3、TIM_OutputState 输出比较状态

2.12.4、TIM_Pulse 设置CCR寄存器的值

2.12.5、一个问题

三、呼吸灯完整代码

3.1、PWM.h

3.2、PWM.c

3.2.1、具体步骤

3.2.2、完整代码

3.3、main.c

四、引脚重映射到PA15端口

4.1、映射讲解

4.2、完整代码

4.2.1、PWM.h

4.2.2、PWM.c

4.2.3、main.c


一、综述

        具体步骤:

        第一步:RCC开启时钟,将我们要用的TIM外设和GPIO外设的时钟打开;

        第二步:配置时基单元,包括前面的时钟源选择和这里的时基单元 都配置好;

        第三步:配置输出比较单元,包括CCR的值、输出比较模式、极性选择、输出使能等参数;

        第四步:配置GPIO,把PWM对应的GPIO抠,初始化为复用推挽输出的配置;

        第五步:运行控制,启动计数器,这样就能输出PWM了。

二、TIM库(有关输出比较的函数)

2.1、TIM_OCxInit 输出比较模块配置*

        函数原型:

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);

        函数讲解:这四个函数是用来配置输出比较模块的。OC即OutputCompare。第一个参数:选择定时器;第二个参数:结构体,配置输出比较的参数。

        函数定义

/**
  * @brief  Initializes the TIMx Channel1 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
 /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare Mode Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));

  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
  /* Set the Output Compare Polarity */
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
  
  /* Set the Output State */
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
    
  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||
     (TIMx == TIM16)|| (TIMx == TIM17))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));
    /* Set the Output N Polarity */
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));    
    /* Set the Output N State */
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));
    
    /* Set the Output Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
    /* Set the Output N Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; 
 
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel2 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
   /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC2E));
  
  /* Get the TIMx CCER register value */  
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC2M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S));
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NP));
    /* Set the Output N Polarity */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NE));    
    /* Set the Output N State */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2N));
    
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel3 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC3E));
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC3M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC3S));  
  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NP));
    /* Set the Output N Polarity */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NE));
    
    /* Set the Output N State */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3N));
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel4 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
  /* Disable the Channel 2: Reset the CC4E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC4E));
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC4M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC4S));
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC4P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    /* Reset the Output Compare IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS4));
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */  
  TIMx->CCMR2 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

2.2、TIM_CtrlPWMOutputs 高级定时器使能主输出

        函数原型:void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState);

        函数讲解使能高级定时器的PWM波形输出的函数。仅高级定时器使用,在使用高级定时器输出PWM时需要调用这个函数,使能主输出,否则PWM将不能正常输出。

        函数定义

/**
  * @brief  Enables or disables the TIM peripheral Main Outputs.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral.
  * @param  NewState: new state of the TIM peripheral Main Outputs.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the TIM Main Output */
    TIMx->BDTR |= TIM_BDTR_MOE;
  }
  else
  {
    /* Disable the TIM Main Output */
    TIMx->BDTR &= (uint16_t)(~((uint16_t)TIM_BDTR_MOE));
  }  
}

2.3、TIM_OCStructInit 输出比较结构体赋默认值

        函数原型:void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);

        函数讲解:这个函数是用来给输出比较结构体赋默认值的。

        函数定义

/**
  * @brief  Fills each TIM_OCInitStruct member with its default value.
  * @param  TIM_OCInitStruct : pointer to a TIM_OCInitTypeDef structure which will
  *         be initialized.
  * @retval None
  */
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  /* Set the default configuration */
  TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
  TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
  TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
  TIM_OCInitStruct->TIM_Pulse = 0x0000;
  TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
}

2.4、TIM_ForcedOCxConfig 配置强制输出模式

        函数原型

void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);

        函数讲解:这四个函数是用来配置强制输出模式的。如果你在运行中想要暂停输出波形并强制输出高电平或低电平,可以使用这个函数。

        但是这四个函数用得不多,因为强制输出高电平和设置占空比100%是一样的,强制输出低电平和设置占空比0%是一样的。

        函数定义

/**
  * @brief  Forces the TIMx output 1 waveform to active or inactive level.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC1REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
  * @retval None
  */
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1M Bits */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);
  /* Configure The Forced output Mode */
  tmpccmr1 |= TIM_ForcedAction;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 2 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC2REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
  * @retval None
  */
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2M Bits */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2M);
  /* Configure The Forced output Mode */
  tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 3 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC3REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
  * @retval None
  */
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC1M Bits */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3M);
  /* Configure The Forced output Mode */
  tmpccmr2 |= TIM_ForcedAction;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Forces the TIMx output 4 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC4REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
  * @retval None
  */
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC2M Bits */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4M);
  /* Configure The Forced output Mode */
  tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

2.5、TIM_OCxPreloadConfig 配置CCR寄存器预装功能

        函数原型

void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);

        函数讲解:这四个函数是用来配置CCR寄存器的预装功能的。预装功能就是影子寄存器,即写入的值不会立即生效,而是在更新时间才会生效,这样可以避免一些小问题。

        函数定义

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR1.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1PE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= TIM_OCPreload;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR2.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2PE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR3.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3PE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= TIM_OCPreload;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR4.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4PE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

2.6、TIM_OCxFastConfig 配置快速使能

        函数原型

void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);

        函数讲解:这四个函数是用来配置快速使能的。

        函数定义

/**
  * @brief  Configures the TIMx Output Compare 1 Fast feature.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1FE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= TIM_OCFast;
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 2 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2FE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 3 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3FE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= TIM_OCFast;
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Configures the TIMx Output Compare 4 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4FE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

2.7、TIM_ClearOCxRef 外部事件时清除REF信号

        函数原型

void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);

        函数讲解:这四个函数用于外部事件时清除REF信号

        函数定义

/**
  * @brief  Clears or safeguards the OCREF1 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1CE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= TIM_OCClear;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF2 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2CE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF3 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3CE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= TIM_OCClear;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF4 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4CE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

2.8、TIM_OCxPolarityConfig && 

        TIM_OCxNPolarityConfig 设置输出比较的极性

        函数原型

void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);

        函数讲解:这七个函数是用来设置输出比较的极性的,其中TIM_OCxPolarityConfig 和 TIM_OCxNPolarityConfig 互为互补通道,OC4没有互补通道

        此处设置极性和结构体初始化时设置极性的作用是一样的,只不过是用结构体时,是一起初始化的,在这里是一个单独的函数进行修改的。

        一般来说,结构体里的参数,都会有一个单独的函数可以进行更改。这里的函数就是用来单独更改输出极性的。

        函数定义

/**
  * @brief  Configures the TIMx channel 1 polarity.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC1 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC1P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);
  tmpccer |= TIM_OCPolarity;
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 1N polarity.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC1N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
   
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC1NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1NP);
  tmpccer |= TIM_OCNPolarity;
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 2 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC2 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC2P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 2N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC2N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
  
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC2NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2NP);
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 3 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC3 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC3P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 3N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC3N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
 
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
    
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC3NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3NP);
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 4 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC4 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC4P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC4P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

2.9、TIM_CCxCmd && TIM_CCxNCmd 单独修改输出使能参数的

        函数原型

void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);

        函数讲解:这两个函数是用来单独修改输出使能参数的。

        函数定义

/**
  * @brief  Enables or disables the TIM Capture Compare Channel x.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  *     @arg TIM_Channel_4: TIM Channel 4
  * @param  TIM_CCx: specifies the TIM Channel CCxE bit new state.
  *   This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. 
  * @retval None
  */
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
{
  uint16_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCX(TIM_CCx));

  tmp = CCER_CCE_Set << TIM_Channel;

  /* Reset the CCxE Bit */
  TIMx->CCER &= (uint16_t)~ tmp;

  /* Set or reset the CCxE Bit */ 
  TIMx->CCER |=  (uint16_t)(TIM_CCx << TIM_Channel);
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  * @param  TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
  *   This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. 
  * @retval None
  */
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
{
  uint16_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCXN(TIM_CCxN));

  tmp = CCER_CCNE_Set << TIM_Channel;

  /* Reset the CCxNE Bit */
  TIMx->CCER &= (uint16_t) ~tmp;

  /* Set or reset the CCxNE Bit */ 
  TIMx->CCER |=  (uint16_t)(TIM_CCxN << TIM_Channel);
}

2.10、TIM_SelectOCxM 选择输出比较模式

        函数原型

        void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel,

                uint16_t TIM_OCMode);

        函数讲解:这个函数是用来选择输出比较模式的。

        函数定义

/**
  * @brief  Selects the TIM Output Compare Mode.
  * @note   This function disables the selected channel before changing the Output
  *         Compare Mode.
  *         User has to enable this channel using TIM_CCxCmd and TIM_CCxNCmd functions.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  *     @arg TIM_Channel_4: TIM Channel 4
  * @param  TIM_OCMode: specifies the TIM Output Compare Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCMode_Timing
  *     @arg TIM_OCMode_Active
  *     @arg TIM_OCMode_Toggle
  *     @arg TIM_OCMode_PWM1
  *     @arg TIM_OCMode_PWM2
  *     @arg TIM_ForcedAction_Active
  *     @arg TIM_ForcedAction_InActive
  * @retval None
  */
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
{
  uint32_t tmp = 0;
  uint16_t tmp1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_OCM(TIM_OCMode));

  tmp = (uint32_t) TIMx;
  tmp += CCMR_Offset;

  tmp1 = CCER_CCE_Set << (uint16_t)TIM_Channel;

  /* Disable the Channel: Reset the CCxE Bit */
  TIMx->CCER &= (uint16_t) ~tmp1;

  if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
  {
    tmp += (TIM_Channel>>1);

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC1M);
   
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= TIM_OCMode;
  }
  else
  {
    tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC2M);
    
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
  }
}

2.11、TIM_SetComparex 更改CCR寄存器的值的函数

        函数原型

void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);

        函数讲解:这四个函数是用来单独更改CCR寄存器的值的函数。这四个函数比较重要,我们在运行时更改占空比,就要用到这四个函数。

        函数定义

/**
  * @brief  Sets the TIMx Capture Compare1 Register value
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  Compare1: specifies the Capture Compare1 register new value.
  * @retval None
  */
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  /* Set the Capture Compare1 Register value */
  TIMx->CCR1 = Compare1;
}

/**
  * @brief  Sets the TIMx Capture Compare2 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  Compare2: specifies the Capture Compare2 register new value.
  * @retval None
  */
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  /* Set the Capture Compare2 Register value */
  TIMx->CCR2 = Compare2;
}

/**
  * @brief  Sets the TIMx Capture Compare3 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare3: specifies the Capture Compare3 register new value.
  * @retval None
  */
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  /* Set the Capture Compare3 Register value */
  TIMx->CCR3 = Compare3;
}

/**
  * @brief  Sets the TIMx Capture Compare4 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare4: specifies the Capture Compare4 register new value.
  * @retval None
  */
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  /* Set the Capture Compare4 Register value */
  TIMx->CCR4 = Compare4;
}

2.12TIM结构体讲解

/** 
  * @brief  TIM Output Compare Init structure definition  
  */

typedef struct
{
  uint16_t TIM_OCMode;        /*!< Specifies the TIM mode.
                                   This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */

  uint16_t TIM_OutputState;   /*!< Specifies the TIM Output Compare state.
                                   This parameter can be a value of @ref TIM_Output_Compare_state */

  uint16_t TIM_OutputNState;  /*!< Specifies the TIM complementary Output Compare state.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_state
                                   @note This parameter is valid only for TIM1 and TIM8. */

  uint16_t TIM_Pulse;         /*!< Specifies the pulse value to be loaded into the Capture Compare Register. 
                                   This parameter can be a number between 0x0000 and 0xFFFF */

  uint16_t TIM_OCPolarity;    /*!< Specifies the output polarity.
                                   This parameter can be a value of @ref TIM_Output_Compare_Polarity */

  uint16_t TIM_OCNPolarity;   /*!< Specifies the complementary output polarity.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_Polarity
                                   @note This parameter is valid only for TIM1 and TIM8. */

  uint16_t TIM_OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
                                   This parameter can be a value of @ref TIM_Output_Compare_Idle_State
                                   @note This parameter is valid only for TIM1 and TIM8. */

  uint16_t TIM_OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
                                   This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State
                                   @note This parameter is valid only for TIM1 and TIM8. */
} TIM_OCInitTypeDef;

2.12.1、TIM_OCMode 输出比较模式

        这个参数可以是TIM_Output_Compare_and_PWM_modes中的一个值。

        TIM_Output_Compare_and_PWM_modes:

/** @defgroup TIM_Output_Compare_and_PWM_modes 
  * @{
  */

#define TIM_OCMode_Timing                  ((uint16_t)0x0000)
#define TIM_OCMode_Active                  ((uint16_t)0x0010)
#define TIM_OCMode_Inactive                ((uint16_t)0x0020)
#define TIM_OCMode_Toggle                  ((uint16_t)0x0030)
#define TIM_OCMode_PWM1                    ((uint16_t)0x0060)
#define TIM_OCMode_PWM2                    ((uint16_t)0x0070)
#define IS_TIM_OC_MODE(MODE) (((MODE) == TIM_OCMode_Timing) || \
                              ((MODE) == TIM_OCMode_Active) || \
                              ((MODE) == TIM_OCMode_Inactive) || \
                              ((MODE) == TIM_OCMode_Toggle)|| \
                              ((MODE) == TIM_OCMode_PWM1) || \
                              ((MODE) == TIM_OCMode_PWM2))
#define IS_TIM_OCM(MODE) (((MODE) == TIM_OCMode_Timing) || \
                          ((MODE) == TIM_OCMode_Active) || \
                          ((MODE) == TIM_OCMode_Inactive) || \
                          ((MODE) == TIM_OCMode_Toggle)|| \
                          ((MODE) == TIM_OCMode_PWM1) || \
                          ((MODE) == TIM_OCMode_PWM2) ||	\
                          ((MODE) == TIM_ForcedAction_Active) || \
                          ((MODE) == TIM_ForcedAction_InActive))

        TIM_OCMode_Timing 冻结模式;

        TIM_OCMode_Active 相等时置有效电平;

        TIM_OCMode_Inactive 相等时置无效电平;

        TIM_OCMode_Toggle 相等时电平翻转;

        TIM_OCMode_PWM1 PWM模式1;

        TIM_OCMode_PWM2 PWM模式2;

        TIM_ForcedAction_Active 强制有效电平输出;

        TIM_ForcedAction_InActive 强制无效电平输出。

2.12.2、TIM_OCPolarity 输出比较极性

        它可以是TIM_Output_Compare_Polarity中的一个值。

/** @defgroup TIM_Output_Compare_Polarity 
  * @{
  */

#define TIM_OCPolarity_High                ((uint16_t)0x0000)
#define TIM_OCPolarity_Low                 ((uint16_t)0x0002)
#define IS_TIM_OC_POLARITY(POLARITY) (((POLARITY) == TIM_OCPolarity_High) || \
                                      ((POLARITY) == TIM_OCPolarity_Low))

        TIM_OCPolarity_High 高极性,即极性不翻转,REF波形直接输出;或者说是有效电平是高电平,REF有效时,输出高电平。

        TIM_OCPolarity_Low 低极性,就是REF电平取反,或者说有效电平为低电平。

2.12.3、TIM_OutputState 输出比较状态

        这个值可以是TIM_Output_Compare_state中的一个值。

/** @defgroup TIM_Output_Compare_state 
  * @{
  */

#define TIM_OutputState_Disable            ((uint16_t)0x0000)
#define TIM_OutputState_Enable             ((uint16_t)0x0001)
#define IS_TIM_OUTPUT_STATE(STATE) (((STATE) == TIM_OutputState_Disable) || \
                                    ((STATE) == TIM_OutputState_Enable))

        TIM_OutputState_Disable 输出比较失能;

        TIM_OutputState_Enable输出比较使能。

2.12.4、TIM_Pulse 设置CCR寄存器的值

        注释:注释写的是指定Pulse的值,会被加载到Capture Compare Register。这就是CCR捕获比较寄存器。这个参数可以是0到FFFF之间的一个值,也就是16位的范围。

         PWM的频率==计数器的更新频率。

        如果现在要产生一个频率为1kHz、占空比为50%、分辨率为1%的PWM波形,则带入公式就是:

        72MHz/(PSC+1)/(ARR+1)=1000,CCR/(ARR+1)=0.5,1/(ARR+1)=0.01。

        计算可得:ARR = 100 - 1;CCR = 50;PSC = 720 - 1;

        则赋值:

/*配置时基单元中的部分代码*/
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;		//PSC


/*配置输出比较单元中的部分代码*/
TIM_OCInitStructure.TIM_Pulse = 50;/*用来设置CCR的*/		//RCC

2.12.5、一个问题

            一个问题:出现的结构体并没有给所有成员赋值,对于结构体变量来说,它是一个局部变量,如果不给他的成员赋初始值,他成员的值就是不确定的,这可能会导致一些问题。
        比如你想把高级定时器当做普通定时器输出PWM时,就需要把OC_Init中的TIM2改成TIM1。这样,这个结构体原本用不到的成员现在就都需要用了。但是有关高级定时器的结构体中的一些成员并没有给赋初值,就会导致高级定时器输出PWM时出现一些奇怪的问题。
        让高级定时器输出4路PWM,如果把初始化函数放在程序的第一行,就没有问题;如果初始化函数之前出现了其他的代码,则4路PWM就会有三路不能输出。
        所以就需要用到TIM_OCStructInit函数了,这个函数就是给结构体赋初始值的。

	/*第三步:配置输出比较单元*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	/*需要TIM_OCStructInit的原因见模块下面。*/
	/*如果不想把所有的结构体成员赋值,
	就可以先用TIM_OCStructInit赋一个初始值,
	再更改想要修改的值就可以了*/
	TIM_OCStructInit(&TIM_OCInitStructure);
	
	
	//TIM_OCInitStructure.TIM_OCIdleState = ;/*高级定时器*/
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;/*设置输出比较的模式*/
	//TIM_OCInitStructure.TIM_OCNIdleState = ;
	//TIM_OCInitStructure.TIM_OCNPolarity = ;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;/*设置输出比较的极性*/
	//TIM_OCInitStructure.TIM_OutputNState = ;
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;/*设置输出使能*/
	//TIM_OCInitStructure.TIM_Pulse = 50;/*用来设置CCR的*/		//RCC
	
	TIM_OC1Init(TIM2,&TIM_OCInitStructure);
	/*一个问题:出现的结构体并没有给所有成员赋值,
	对于结构体变量来说,它是一个局部变量,
	如果不给他的成员赋初始值,他成员的值就是不确定的,
	这可能会导致一些问题。*/
	/*比如你想把高级定时器当做普通定时器输出PWM时,
	就需要吧ocinit中的TIM2改成TIM1。
	这样,这个觉构体原本用不到的成员现在就都需要用了。
	但是有关高级定时器的结构体中的一些成员并没有给赋初值,
	就会导致高级定时器输出PWM时出现一些奇怪的问题。*/
	/*让高级定时器输出4路PWM,如果把初始化函数放在程序的第一行,
	就没有问题;如果初始化函数之前出现了其他的代码,
	则4路PWM就会有三路不能输出。*/
	/*所以就需要用到TIM_OCStructInit函数了,
	这个函数就是给结构体赋初始值的。*/

三、呼吸灯完整代码

3.1、PWM.h

#ifndef _PWM_H
#define _PWM_H

void pwm_init(void);
void pwm_setcompare1(uint16_t compare);

#endif

3.2、PWM.c

3.2.1、具体步骤

具体步骤:

        第一步:RCC开启时钟,将我们要用的TIM外设和GPIO外设的时钟打开;

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

        第二步:配置时基单元,包括前面的时钟源选择和这里的时基单元 都配置好;

	/*第二步:配置时基单元*/
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;		//PSC
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	TIM_ClearFlag(TIM2,TIM_FLAG_Update);
	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

        第三步:配置输出比较单元,包括CCR的值、输出比较模式、极性选择、输出使能等参数;

	/*第三步:配置输出比较单元*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	/*需要TIM_OCStructInit的原因见模块下面。*/
	/*如果不想把所有的结构体成员赋值,
	就可以先用TIM_OCStructInit赋一个初始值,
	再更改想要修改的值就可以了*/
	TIM_OCStructInit(&TIM_OCInitStructure);
	
	
	//TIM_OCInitStructure.TIM_OCIdleState = ;/*高级定时器*/
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;/*设置输出比较的模式*/
	//TIM_OCInitStructure.TIM_OCNIdleState = ;
	//TIM_OCInitStructure.TIM_OCNPolarity = ;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;/*设置输出比较的极性*/
	//TIM_OCInitStructure.TIM_OutputNState = ;
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;/*设置输出使能*/
	//TIM_OCInitStructure.TIM_Pulse = 50;/*用来设置CCR的*/		//RCC
	
	TIM_OC1Init(TIM2,&TIM_OCInitStructure);

        第四步:配置GPIO,把PWM对应的GPIO抠,初始化为复用推挽输出的配置;

	/*第四步:配置GPIO*/
	
	 GPIO_InitTypeDef GPIO_InitStructure;
	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	 /*选择为复用推挽输出*/
	 /*对于普通的推挽输出,引脚的控制权是来自于输出数据寄存器的,
	 如果想要定时器来控制引脚,就需要使用复用开漏推挽输出模式。
	 在这里,输出数据寄存器将会被断开,输出控制权将转移给片上外设,
	 00:21:00*/ 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);

        第五步:运行控制,启动计数器,这样就能输出PWM了。

TIM_Cmd(TIM2,ENABLE);

3.2.2、完整代码

#include "stm32f10x.h"                  // Device header

void pwm_init(void)
{
	/*第一步:RCC开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	/*第二步:配置时基单元*/
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;		//PSC
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	TIM_ClearFlag(TIM2,TIM_FLAG_Update);
	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
	
	/*第三步:配置输出比较单元*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	/*需要TIM_OCStructInit的原因见模块下面。*/
	/*如果不想把所有的结构体成员赋值,
	就可以先用TIM_OCStructInit赋一个初始值,
	再更改想要修改的值就可以了*/
	TIM_OCStructInit(&TIM_OCInitStructure);
	
	
	//TIM_OCInitStructure.TIM_OCIdleState = ;/*高级定时器*/
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;/*设置输出比较的模式*/
	//TIM_OCInitStructure.TIM_OCNIdleState = ;
	//TIM_OCInitStructure.TIM_OCNPolarity = ;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;/*设置输出比较的极性*/
	//TIM_OCInitStructure.TIM_OutputNState = ;
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;/*设置输出使能*/
	//TIM_OCInitStructure.TIM_Pulse = 50;/*用来设置CCR的*/		//RCC
	
	TIM_OC1Init(TIM2,&TIM_OCInitStructure);
	/*一个问题:出现的结构体并没有给所有成员赋值,
	对于结构体变量来说,它是一个局部变量,
	如果不给他的成员赋初始值,他成员的值就是不确定的,
	这可能会导致一些问题。*/
	/*比如你想把高级定时器当做普通定时器输出PWM时,
	就需要吧ocinit中的TIM2改成TIM1。
	这样,这个觉构体原本用不到的成员现在就都需要用了。
	但是有关高级定时器的结构体中的一些成员并没有给赋初值,
	就会导致高级定时器输出PWM时出现一些奇怪的问题。*/
	/*让高级定时器输出4路PWM,如果把初始化函数放在程序的第一行,
	就没有问题;如果初始化函数之前出现了其他的代码,
	则4路PWM就会有三路不能输出。*/
	/*所以就需要用到TIM_OCStructInit函数了,
	这个函数就是给结构体赋初始值的。*/
	
	/*第四步:配置GPIO*/
	
	 GPIO_InitTypeDef GPIO_InitStructure;
	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	 /*选择为复用推挽输出*/
	 /*对于普通的推挽输出,引脚的控制权是来自于输出数据寄存器的,
	 如果想要定时器来控制引脚,就需要使用复用开漏推挽输出模式。
	 在这里,输出数据寄存器将会被断开,输出控制权将转移给片上外设,
	 00:21:00*/ 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	TIM_Cmd(TIM2,ENABLE);
}

/*修改CCR的值*/
void pwm_setcompare1(uint16_t compare)
{
	TIM_SetCompare1(TIM2,compare);
}

3.3、main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"

uint8_t i;
int main(void)
{
	OLED_Init();
	pwm_init();
	while (1)
	{
		/*逐渐变亮*/
		for(i = 0; i <= 100; i++)
			{
				pwm_setcompare1(i);
				Delay_ms(10);
			}
		/*逐渐变暗*/
		for(i = 0; i <= 100; i++)
			{
				pwm_setcompare1(100 - i);
				Delay_ms(10);
			}	
	}
}

四、引脚重映射到PA15端口

4.1、映射讲解

        从引脚定义表中可以看到, TIM2的CH1可以从PA0挪到PA15引脚上。这步的操作需要用到AFIO了。

        具体步骤:

        第一步:开启AFIO的时钟。

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

        第二步:引脚重映射设置。

        在stm32f10x_gpio.h中,获取函数GPIO_PinRemapConfig。

        引脚重映射函数的定义和声明:

/**
  * @brief  Changes the mapping of the specified pin.
  * @param  GPIO_Remap: selects the pin to remap.
  *   This parameter can be one of the following values:
  *     @arg GPIO_Remap_SPI1             : SPI1 Alternate Function mapping
  *     @arg GPIO_Remap_I2C1             : I2C1 Alternate Function mapping
  *     @arg GPIO_Remap_USART1           : USART1 Alternate Function mapping
  *     @arg GPIO_Remap_USART2           : USART2 Alternate Function mapping
  *     @arg GPIO_PartialRemap_USART3    : USART3 Partial Alternate Function mapping
  *     @arg GPIO_FullRemap_USART3       : USART3 Full Alternate Function mapping
  *     @arg GPIO_PartialRemap_TIM1      : TIM1 Partial Alternate Function mapping
  *     @arg GPIO_FullRemap_TIM1         : TIM1 Full Alternate Function mapping
  *     @arg GPIO_PartialRemap1_TIM2     : TIM2 Partial1 Alternate Function mapping
  *     @arg GPIO_PartialRemap2_TIM2     : TIM2 Partial2 Alternate Function mapping
  *     @arg GPIO_FullRemap_TIM2         : TIM2 Full Alternate Function mapping
  *     @arg GPIO_PartialRemap_TIM3      : TIM3 Partial Alternate Function mapping
  *     @arg GPIO_FullRemap_TIM3         : TIM3 Full Alternate Function mapping
  *     @arg GPIO_Remap_TIM4             : TIM4 Alternate Function mapping
  *     @arg GPIO_Remap1_CAN1            : CAN1 Alternate Function mapping
  *     @arg GPIO_Remap2_CAN1            : CAN1 Alternate Function mapping
  *     @arg GPIO_Remap_PD01             : PD01 Alternate Function mapping
  *     @arg GPIO_Remap_TIM5CH4_LSI      : LSI connected to TIM5 Channel4 input capture for calibration
  *     @arg GPIO_Remap_ADC1_ETRGINJ     : ADC1 External Trigger Injected Conversion remapping
  *     @arg GPIO_Remap_ADC1_ETRGREG     : ADC1 External Trigger Regular Conversion remapping
  *     @arg GPIO_Remap_ADC2_ETRGINJ     : ADC2 External Trigger Injected Conversion remapping
  *     @arg GPIO_Remap_ADC2_ETRGREG     : ADC2 External Trigger Regular Conversion remapping
  *     @arg GPIO_Remap_ETH              : Ethernet remapping (only for Connectivity line devices)
  *     @arg GPIO_Remap_CAN2             : CAN2 remapping (only for Connectivity line devices)
  *     @arg GPIO_Remap_SWJ_NoJTRST      : Full SWJ Enabled (JTAG-DP + SW-DP) but without JTRST
  *     @arg GPIO_Remap_SWJ_JTAGDisable  : JTAG-DP Disabled and SW-DP Enabled
  *     @arg GPIO_Remap_SWJ_Disable      : Full SWJ Disabled (JTAG-DP + SW-DP)
  *     @arg GPIO_Remap_SPI3             : SPI3/I2S3 Alternate Function mapping (only for Connectivity line devices)
  *                                        When the SPI3/I2S3 is remapped using this function, the SWJ is configured
  *                                        to Full SWJ Enabled (JTAG-DP + SW-DP) but without JTRST.   
  *     @arg GPIO_Remap_TIM2ITR1_PTP_SOF : Ethernet PTP output or USB OTG SOF (Start of Frame) connected
  *                                        to TIM2 Internal Trigger 1 for calibration (only for Connectivity line devices)
  *                                        If the GPIO_Remap_TIM2ITR1_PTP_SOF is enabled the TIM2 ITR1 is connected to 
  *                                        Ethernet PTP output. When Reset TIM2 ITR1 is connected to USB OTG SOF output.    
  *     @arg GPIO_Remap_PTP_PPS          : Ethernet MAC PPS_PTS output on PB05 (only for Connectivity line devices)
  *     @arg GPIO_Remap_TIM15            : TIM15 Alternate Function mapping (only for Value line devices)
  *     @arg GPIO_Remap_TIM16            : TIM16 Alternate Function mapping (only for Value line devices)
  *     @arg GPIO_Remap_TIM17            : TIM17 Alternate Function mapping (only for Value line devices)
  *     @arg GPIO_Remap_CEC              : CEC Alternate Function mapping (only for Value line devices)
  *     @arg GPIO_Remap_TIM1_DMA         : TIM1 DMA requests mapping (only for Value line devices)
  *     @arg GPIO_Remap_TIM9             : TIM9 Alternate Function mapping (only for XL-density devices)
  *     @arg GPIO_Remap_TIM10            : TIM10 Alternate Function mapping (only for XL-density devices)
  *     @arg GPIO_Remap_TIM11            : TIM11 Alternate Function mapping (only for XL-density devices)
  *     @arg GPIO_Remap_TIM13            : TIM13 Alternate Function mapping (only for High density Value line and XL-density devices)
  *     @arg GPIO_Remap_TIM14            : TIM14 Alternate Function mapping (only for High density Value line and XL-density devices)
  *     @arg GPIO_Remap_FSMC_NADV        : FSMC_NADV Alternate Function mapping (only for High density Value line and XL-density devices)
  *     @arg GPIO_Remap_TIM67_DAC_DMA    : TIM6/TIM7 and DAC DMA requests remapping (only for High density Value line devices)
  *     @arg GPIO_Remap_TIM12            : TIM12 Alternate Function mapping (only for High density Value line devices)
  *     @arg GPIO_Remap_MISC             : Miscellaneous Remap (DMA2 Channel5 Position and DAC Trigger remapping, 
  *                                        only for High density Value line devices)     
  * @param  NewState: new state of the port pin remapping.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void GPIO_PinRemapConfig(uint32_t GPIO_Remap, FunctionalState NewState)
{
  uint32_t tmp = 0x00, tmp1 = 0x00, tmpreg = 0x00, tmpmask = 0x00;

  /* Check the parameters */
  assert_param(IS_GPIO_REMAP(GPIO_Remap));
  assert_param(IS_FUNCTIONAL_STATE(NewState));  
  
  if((GPIO_Remap & 0x80000000) == 0x80000000)
  {
    tmpreg = AFIO->MAPR2;
  }
  else
  {
    tmpreg = AFIO->MAPR;
  }

  tmpmask = (GPIO_Remap & DBGAFR_POSITION_MASK) >> 0x10;
  tmp = GPIO_Remap & LSB_MASK;

  if ((GPIO_Remap & (DBGAFR_LOCATION_MASK | DBGAFR_NUMBITS_MASK)) == (DBGAFR_LOCATION_MASK | DBGAFR_NUMBITS_MASK))
  {
    tmpreg &= DBGAFR_SWJCFG_MASK;
    AFIO->MAPR &= DBGAFR_SWJCFG_MASK;
  }
  else if ((GPIO_Remap & DBGAFR_NUMBITS_MASK) == DBGAFR_NUMBITS_MASK)
  {
    tmp1 = ((uint32_t)0x03) << tmpmask;
    tmpreg &= ~tmp1;
    tmpreg |= ~DBGAFR_SWJCFG_MASK;
  }
  else
  {
    tmpreg &= ~(tmp << ((GPIO_Remap >> 0x15)*0x10));
    tmpreg |= ~DBGAFR_SWJCFG_MASK;
  }

  if (NewState != DISABLE)
  {
    tmpreg |= (tmp << ((GPIO_Remap >> 0x15)*0x10));
  }

  if((GPIO_Remap & 0x80000000) == 0x80000000)
  {
    AFIO->MAPR2 = tmpreg;
  }
  else
  {
    AFIO->MAPR = tmpreg;
  }  
}

         第一个参数选项非常多。里面都是重映射的方式。在手册中可以找到每个凡是对应的重映射关系。

        据表,如果想将PA0改为PA15,就可以选择“部分重映射方式1”或者“完全重映射”。

        从引脚重映射代码注释中查询,发现TIM2有部分重映射1、部分重映射2和完全重映射,分别为:

        GPIO_PartialRemap1_TIM2、GPIO_PartialRemap2_TIM2、GPIO_FullRemap_TIM2。

        故在PWM.c文件中,添加一行代码用于引脚重映射:

GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2,ENABLE);

        这样就能把PA0换到PA15了。 

        但是PA15上电后默认复用为了调试端口JTDI(对照引脚定义表),所以如果想让它作为普通的GPIO或者复用定时器的通道,还需要先关闭调试端口的复用

        关闭方式:依旧使用GPIO_PinRemapConfig函数。

        从引脚重映射函数代码的注释中查询,发现这里有三个参数用来解除调试端口的复用的,分别是:

        GPIO_Remap_SWJ_NoJTRST:SWJ是SWD和JTAG两种调试方式,NoJTRST即解除JTRST引脚的复用。在引脚定义表第40行可以看到,如果使用这个参数,那么NJTRST(PB4)就变味正常的GPIO口了,其他的四个端口仍然是调试端口,不能当做GPIO来使用。

        GPIO_Remap_SWJ_JTAGDisable:解除JTAG调试端口的复用。在引脚定义中就是PA15、PB3、PB4三个端口变为GPIO,上面的PA13和PA14仍为SWD的调试端口。

        GPIO_Remap_SWJ_Disable:解除SWD和JTAG的调试端口全部解除。在引脚定义中,就是PA13、PA14、PA15、PB3、PB4这5个引脚全部变成普通的GPIO,没有调试功能了。

        所以以上参数千万不能随便调用,一旦调用这个参数且下载程序之后,调试端口就都没有了,这之后再使用STLINK就下载不进去程序了。这时就只能使用串口下载,下载一个新的、没有解除调试端口的程序,这样才能把调试端口弄回来

        在这里,如果我们需要使用PA15、PB3、PB4这三个引脚,那么通常就只需要解除JTAG的复用,保留SWD的复用。

        所以函数的第一个参数可以选择GPIO_Remap_SWJ_JTAGDisable。

GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable,ENABLE);

        这样就可以正常使用PA15这个引脚了。 

        总结

        如果想让PA15、PB3、PB4这三个引脚当做GPIO来使用的话:先打开AFIO时钟,再用AFIO将JTAG复用解除掉;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable,ENABLE);

        如果想重映射定时器或者其他外设的复用引脚:先打开AFIO时钟,再用AFO重映射外设复用的引脚。

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2,ENABLE);

        打开AFIO时钟-》重映射引脚-》解除调试端口。 

4.2、完整代码

4.2.1、PWM.h

#ifndef _PWM_H
#define _PWM_H

void pwm_init(void);
void pwm_setcompare1(uint16_t compare);

#endif

4.2.2、PWM.c

#include "stm32f10x.h"                  // Device header

void pwm_init(void)
{
	/*第一步:RCC开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
	
	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2,ENABLE);
	GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable,ENABLE);
	/*第二步:配置时基单元*/
	TIM_InternalClockConfig(TIM2);
	
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;		//ARR
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;		//PSC
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	TIM_ClearFlag(TIM2,TIM_FLAG_Update);
	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
	
	/*第三步:配置输出比较单元*/
	TIM_OCInitTypeDef TIM_OCInitStructure;
	/*需要TIM_OCStructInit的原因见模块下面。*/
	/*如果不想把所有的结构体成员赋值,
	就可以先用TIM_OCStructInit赋一个初始值,
	再更改想要修改的值就可以了*/
	TIM_OCStructInit(&TIM_OCInitStructure);
	
	
	//TIM_OCInitStructure.TIM_OCIdleState = ;/*高级定时器*/
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;/*设置输出比较的模式*/
	//TIM_OCInitStructure.TIM_OCNIdleState = ;
	//TIM_OCInitStructure.TIM_OCNPolarity = ;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;/*设置输出比较的极性*/
	//TIM_OCInitStructure.TIM_OutputNState = ;
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;/*设置输出使能*/
	//TIM_OCInitStructure.TIM_Pulse = 50;/*用来设置CCR的*/		//RCC
	
	TIM_OC1Init(TIM2,&TIM_OCInitStructure);
	
	/*第四步:配置GPIO*/
	
	 GPIO_InitTypeDef GPIO_InitStructure;
	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	 /*选择为复用推挽输出*/
	 /*对于普通的推挽输出,引脚的控制权是来自于输出数据寄存器的,
	 如果想要定时器来控制引脚,就需要使用复用开漏推挽输出模式。
	 在这里,输出数据寄存器将会被断开,输出控制权将转移给片上外设,
	 00:21:00*/ 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	TIM_Cmd(TIM2,ENABLE);
}

/*修改CCR的值*/
void pwm_setcompare1(uint16_t compare)
{
	TIM_SetCompare1(TIM2,compare);
}

4.2.3、main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"

uint8_t i;
int main(void)
{
	OLED_Init();
	pwm_init();
	while (1)
	{
		/*逐渐变亮*/
		for(i = 0; i <= 100; i++)
			{
				pwm_setcompare1(i);
				Delay_ms(10);
			}
		/*逐渐变暗*/
		for(i = 0; i <= 100; i++)
			{
				pwm_setcompare1(100 - i);
				Delay_ms(10);
			}	
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2098650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【如何下载Landsat数据】

下载Landsat数据可以通过多种途径实现&#xff0c;主要包括使用官方网站、第三方平台和专门的软件库等。以下是一些常用的方法&#xff1a; 1. 使用USGS官方网站 EarthExplorer&#xff08;earthexplorer.usgs.gov&#xff09; 注册账号&#xff1a;首先&#xff0c;需要在…

10-python格式化字符串的四种方法(%,format,f-string,string template)

3 f-string (格式化字符串) in Python 自 Python 3.6 引入以来,f-string 提供了一种更加简洁和直观的方式来进行字符串格式化。其语法简单明了:只需在字符串前加上字母 f 或 F,并在字符串中使用 {} 来包裹需要插入的内容。 它相比于之前的%格式化和字符串format方法写起来更…

【R语言】基于Biomod2集成平台探究物种分布区的构建流程(SDMs)(持续更新中。。。。。。)

Species Distribution Models 1.写在前面2.物种分布模型介绍3.输入数据准备及预处理3.1.如何从GBIF网站上获取分布点数据&#xff08;基于rgbif包&#xff09;3.2.分布点稀疏处理&#xff08;基于spThin函数&#xff09;3.3.如何获取环境变量数据&#xff08;基于getData函数&a…

兴业月报|八月法拍房市场套均成交折扣降至6.9折

导读 8月北京法拍房成交房源233套&#xff0c;成交总金额18.2891亿元&#xff0c;套均成交价784.94万元&#xff0c;总参拍人数890人&#xff0c;套均参拍人数3.81人&#xff0c;套均成交折扣6.9折。 ——兴业数据中心 2024年八月北京法拍房市场详细数据报告 2024.03-2024.0…

计算机网络 第1章 概述

文章目录 计算机网络概念计算机网络的组成计算机网络的功能三种数据交换技术电路交换&#xff08;Circuit Switching&#xff09;报文交换&#xff08;message&#xff09;分组交换 三种交换方式性能对比计算机网络的分类计算机网络的性能指标性能指标1&#xff1a;速率性能指标…

【mysql】mysql查询机制 调优不止是索引调优

前言&#xff1a;说到mysql调优 我们第一反应都是想到索引调优 应该这是最基本的 也是至关重要的&#xff1b;一般工作个两年 索引调优都可以掌握的八九不离十&#xff0c;相关数据结构特点也都能说个一二出来&#xff0c;所以本文重点是讲述其它机制 整体架构 连接器&#xff…

【C++】手动实现String类的封装(分文件编译)

实现了String类的大部分封装&#xff0c;采用分文件编译 //mystring.h #ifndef MYSTRING_H #define MYSTRING_H#include <iostream> #include <cstring> using namespace std;class myString { private:char *str; //定义一个字符串int size; //记录字符串…

比亚迪方程豹携手华为乾崑智驾,加速中国智驾技术向前

近日&#xff0c;比亚迪方程豹与华为乾崑智驾在深圳签署合作协议&#xff0c;中国两大科技巨头强强联合&#xff0c;共同合作开发全球首个硬派专属智能驾驶方案&#xff0c;实现整车智驾深度融合&#xff0c;首发搭载在即将上市的方程豹豹8车型。 比亚迪智驾以自主研发和开放合…

MySQL之数据库基础

目录 一、数据库 1、基本概念 2、常见的数据库 3、MySQL数据库 连接MySQL服务器 数据逻辑存储 二、数据库和表的本质 三、SQL语句 四、服务器&#xff0c;数据库&#xff0c;表的关系 五、存储引擎 查看存储引擎 一、数据库 1、基本概念 一般来说&#xff0c;数据库…

【软件技巧】第33课,软件逆向安全工程师之如何快速的跑到某行代码EIP设置,每天5分钟学习逆向吧!

鼠标右键在此设置EIP EIP&#xff08;Extended Instruction Pointer&#xff09;是x86架构中一个重要的寄存器&#xff0c;它用于存储当前正在执行的指令的地址。EIP是程序计数器&#xff08;Program Counter&#xff09;的扩展版本&#xff0c;因为它是32位寄存器&#xff0c…

Centos安装node_exporter

使用以下命令下载最新版本的node_exporter, 地址: https://github.com/prometheus/node_exporter/releasesorter/releases&#xff1a; wget https://github.com/prometheus/node_exporter/releases/download/v1.6.1/node_exporter-1.6.1.linux-amd64.tar.gz或本地下载上传到服…

python 字典怎么提取value

打开编辑器&#xff0c;写上注释内容。 新建一个函数getvalue。 新建一个字典。 zidian{"country1":"america","country2":"australia","country3":"germany"} 利用values这个方法来获取字典中的所有Vlue值&…

浅析synchronized锁升级的原理与实现 1

目录 背景 锁的用法 底层实现 原理分析 锁的状态 锁升级 锁升级过程 锁升级简要步骤 锁升级细化流程 背景 在多线程编程中&#xff0c;线程同步是一个关键的概念&#xff0c;它确保了多个线程对共享资源的安全访问。Java中的synchronized关键字是一种常用的线程同步机制…

数据安全与个人信息保护的辨析

文章目录 前言一、合规1、合规的目标导向原则2、监管平衡的原则二、基础设施1、公共基础设施2、企业基础设施三、数据流通1、数据生产要素是数字化时代生产要素的变革理论2、数据产品的保护源自于数据产品的价值四、产品与服务1、数据安全与网络安全2、数据安全的分类分级与数据…

Qt-信号与槽

1. 认识信号和槽 Qt中&#xff0c;谈到信号&#xff0c;涉及到三个要素. 信号源&#xff1a;由哪个控件发出的信号信号的类型&#xff1a;用户进行不同的操作&#xff0c;就可能出发不同的信号 点击按钮&#xff0c;触发点击信号 在输入框中移动光标&#xff0c;触发移动光标的…

github私有仓库通过action部署hexo到公开仓库

github私有仓库通过action部署hexo到公开仓库 有一段时间一直将博客md文件直接放到公开仓库然后通过工作流action创建一个gh-page分支&#xff0c;来实现部署 但是这样做有一个问题&#xff0c;如果你的源文件&#xff0c;或者配置文件中有涉及变量&#xff0c;或者密钥key&a…

STM32G474之TIM1输出PWM互补信号(无死区时间和BKIN输入)

STM32G474之TIM1输出PWM互补信号&#xff0c;无死区时间&#xff0c;无BKIN输入。定时器1是16向上计数器&#xff0c;16向下计数器&#xff0c;16向上/向下计数器&#xff0c;输入时钟分频值&#xff1a;“1至65536”中的任意整数&#xff1b;捕获输入通道4个&#xff0c;比较输…

【C++ Primer Plus习题】9.4

问题: 解答: main.cpp #include <iostream> #include "sales.h" using namespace std; using namespace SALES;int main() {Sales s1, s2;double de[QUARTERS] { 12.1,32.1,42.1,51.1 };setSales(s1, de, QUARTERS);showSales(s1);cout << endl;setSal…

AI图片扩展工具 | 一名非技术人员依靠AI就能写出来

前言 我本职是一个技术支持&#xff0c;原本和开发搭不到边。但这两年 AI 发展迅猛&#xff0c;让我这样的半吊子也能借助 AI 的力量写网站。 因为这两年压力大&#xff0c;所以琢磨着出海看看能不能挣到钱&#xff0c;所以在学习做网站。 这个站是我的第 5 个作品了。前面 …

盘点大模型中转 API 平台,并比较费用

1. 大模型中转 API 平台集合 1.1 DevAGI DevAGI开放平台 Open AI 价格 1.2 Deepbricks 官网价格 1.3 AiHubMix AiHubMix 官网 使用教程 价格&#xff1a; 1.4 WildCard 开卡订阅 WildCard官网 价格 有3.5% 的充值手续费&#xff0c;API 价格与 Open AI 一样 2. 价…