在人工智能领域,大语言模型(LLM)因其在自然语言处理上的强大能力而备受瞩目。然而,这些模型往往需要大量的计算资源和网络连接,限制了它们在本地环境的应用。Ollama 的推出,为这一问题提供了解决方案。作为一个开源平台,Ollama 允许用户在本地机器上轻松设置和运行 LLM,简化了整个流程,使得本地部署语言模型变得更加可行和高效。
简介
Ollama 是一个开源的人工智能模型项目,专注于开发高质量的语言模型。该项目的目标是使先进的自然语言处理技术更加普及和易于获取,同时促进研究社区的合作与创新。Ollama 项目提供了多种语言模型的训练代码、数据集以及预训练好的模型权重,以便研究人员和开发者能够快速构建和部署自己的语言生成应用。
Ollama 的核心特性
开源与易用性
Ollama 的最大优势之一是它的开源性质。这意味着开发者社区可以共同参与到平台的开发和优化中来,同时也保证了软件的透明度和可定制性。Ollama 的易用性体现在它简化了下载、安装和与 LLM 交互的过程。用户只需通过简单的命令行操作,即可在本地机器上启动和运行模型。
REPL交互环境
Ollama 内置了 REPL(Read-Eval-Print Loop)功能,这是一种交互式编程环境,允许用户输入代码并立即看到结果。这种即时反馈机制极大地提高了开发效率,使得调试和实验变得更加便捷。
模型管理
Ollama 提供了一套模型管理工具,用户可以通过命令行轻松查看、下载、删除和运行不同的语言模型。这包括一个在线模型库,用户可以浏览并了解各种模型的详细信息,如模型大小、参数等。
硬件兼容性
Ollama 支持多种硬件配置,无论是 GPU 还是 CPU,都能运行语言模型。这为用户提供了灵活的选择,即使在没有高性能 GPU 的情况下,也能在 CPU 上运行模型,尽管速度会有所减慢。
使用Ollama
硬件需求
获取 Ollama 中可用模型的列表:
ollama.com/library
GPU
查看 Ollama 支持的 GPU:
github.com/ollama/olla…
CPU
对于大型模型,如 7B、13B 或 33B,Ollama 建议至少分别有 8GB、16GB 和 32GB 的 RAM。
安装与启动
下载链接如下:
ollama.com/download
下载 Ollama 后,用户可以通过命令行界面(Terminal)快速启动模型。例如,使用ollama run phi3
命令下载并运行模型 phi3。如果需要先下载模型再运行,可以使用ollama pull phi3
命令。
在 Ollama 的 REPL 环境中,用户可以通过输入/?
来查看所有可用的命令和快捷方式。这包括退出REPL的命令/bye
,以及获取快捷方式列表的命令/? shortcuts
。
ollama 常用命令如下:
ollama ls
显示拥有的模型ollama rm <modelname>
删除指定模型ollama status
查看模型状态ollama logs
查看模型日志
LangChain 集成
Ollama 支持使用 LangChain 交互。使用Llama3 为例:
准备工作
ollama pull llama3
pip install langchain langchain-ollama ollama
使用示例
from langchain_ollama import OllamaLLM
model = OllamaLLM(model="llama3")
response = model.invoke(input="What's up?")
print(response)
"""
Not much! Just an AI, waiting to chat with you. How about you? What's new and exciting in your world?
"""
开始一个简单对话:
from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
template = """
User will ask you questions. Answer it.
The history of this conversation: {context}
Question: {question}
Answer:
"""
model = OllamaLLM(model="llama3")
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model
def chat():
context = ""
print("Welcome to the AI Chatbot! Type 'exit' to quit.")
while True:
question = input("You: ")
if question.lower() == "exit":
break
response = chain.invoke({"context":context, "question": question})
print(f"AI: {response}")
context += f"\nUser: {question}\nAI: {response}"
chat()
Web 使用
可以按照以下链接的说明安装 open-webui:
github.com/open-webui/…
结语
Ollama 作为本地运行语言模型的工具,不仅降低了对云端资源的依赖,还提高了数据处理的安全性和响应速度。它通过提供 REPL 环境、模型管理命令和与 LangChain 的交互能力,极大地丰富了用户与语言模型的交互方式。随着技术的不断发展,Ollama 有望进一步推动本地 AI 应用的普及和深入,为开发者和企业提供更多的可能性。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓