多目标应用:基于NSGA3的移动机器人路径规划研究(提供MATLAB代码)

news2025/1/11 14:00:25

 一、机器人路径规划介绍

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。对于栅格法,当空间增大时,所需存储空间剧增,决策速度下降;而人工势场法容易产生局部最优解问题和死锁现象。随着智能控制技术的发展,出现了如遗传算法算法、粒子群优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法等。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):5.DOI:10.3321/j.issn:1002-0446.2005.02.008.

[3]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

二、栅格地图环境搭建

首先建立移动机器人工作环境,设移动机器人的工作空间为二维空间(记为RS),工作环境中的障碍物即为机床。在机器人运动过程中,障碍物为静止且大小不发生变化。按栅格法划分RS,移动机器人在栅格间行走。无障碍物的栅格为可行栅格,有障碍物的栅格为不可行栅格。栅格集包含所有栅格。栅格标识有:直角坐标法和序号法。本文采用序号标识法。

在移动机器人工作空间下按从左到右,从上到下的顺序,依次标记为序号1,2,3,···,n,每一个序号代表一个栅格。为了避免移动机器人与障碍物发生碰撞,可以将障碍物膨胀,障碍物在占原有栅格的同时,再占多个栅格,按 个栅格算。这种划分方法简单实用,能够满足环境模型与真实情况相符。从而使移动机器人在路径规划时畅通无阻。令S={1,2,3,···,N}为栅格序号集。根据上述对应关系,可知g(0,0)的序号为1,g(1,0)序号为2,直至g(X,Y)的序号为n。规划起始位置、目标位置均为任意且都属于S(但不在同一栅格内)。

在实际工作环境中,移动机器人工作环境是复杂多变的,且为三维空间。为了便于研究,本文对环境进行简化建模。栅格法是一种常用的环境表示方法,因其简单方便(二维环境),环境建模的复杂性小,因而本文环境建模采用栅格法。在栅格地图中,工作环境被划分为很多栅格,其中包括有障碍物和无障碍的栅格,在仿真程序中用0表示此栅格无障碍物,机器人可以通过此栅格,用1表示栅格有障碍物,机器人无法通过,需选择其他栅格。栅格的尺寸大小可根据工作环境中的障碍物尺寸以及安全距离进行设置。为了实现程序仿真,需要对栅格进行标识,如下图所示,以20x20的栅格环境为例来说明。

如上图所示,白色栅格表示无障碍物的栅格,黑色栅格则表示有障碍物的栅格,在地图中对每个栅格编号,不同序号的栅格在坐标系中的坐标可用下式来表示:

x=mod(Ni/N)-0.5

y=N-ceil(Ni/N)+0.5

其中,mod为取余运算,ceil表示向后取整,Ni是对应栅格的标号,N表示每 列的栅格数量,取栅格中心位置作为栅格在坐标系中的坐标。这样机器人全局路径规划的问题就转变成了利用算法在栅格地图上寻找由起始点到目标点的有序的栅格子集,这些栅格子集的中心连线便是算法寻找的路径。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

三、机器人路径规划多目标模型

3.1路径成本

当机器人从起点向目标点移动时,通常选择最短的一条路径。将一条路径上每 条线段的长度累加求和即可得到路径总长度。任何两点形成的线段都是根据欧氏距 离来计算的,其中,P = [P0, P1, …, Pi, Pi + 1, … Pn, Pn + 1]代表路径 P,S = P0代表起 点,T = Pn + 1代表目标点。路径长度目标计算方法如下式

其中,Pi =(xi, yi)和 Pi + 1 = (xi + 1, yi + 1)是路径中的两个连续点,d(Pi, Pi + 1)是 路径中的线段距离;Length(P)表示由所有线段相加得到的总路径长度;n 表示路 径中的点数量。

3.2平滑成本

路径平滑度表示路径的弯曲程度,换句话说,只有当路径是平滑的,机器人 在移动时才会使用较少的能量。为了衡量可行路径的平滑度,使用两个连续路段之 间的夹角 Ang [Pi, Pi + 1, Pi + 2]表示。路径平滑度的计算方法如下式

其中 Pi,Pi + 1和 Pi + 2是路径上的三个相邻节点。

3.3目标函数

移动机器人(Mobile robot,MR)的路径规划的目标函数f1f2分别是路径成本最小平滑成本最小

参考文献:

 [1]于振翱. 面向多目标优化的移动机器人路径规划方法研究[D]. 山东:聊城大学,2023. 

[2]杨嘉. 基于改进NSGA-Ⅱ算法的移动机器人路径规划研究[D]. 陕西:长安大学,2021.

四、NSGA3求解移动机器人路径规划

NSGA-III(非支配排序遗传算法第三版)是由Kalyanmoy Deb等人在2013年提出的一种多目标优化算法,旨在解决具有四个或更多目标的复杂优化问题。与传统的NSGA-II相比,NSGA-III在处理高维目标问题时能够更有效地保持种群的多样性和收敛性。
NSGA-III的核心思想是使用预定的参考方向来引导算法的搜索过程。这些参考方向是预先定义的,通常在算法初始化时提供。算法通过这些参考方向来评估和选择个体,从而在多目标空间中找到均匀分布的Pareto最优解。
参考文献:

[1] Deb K , Jain H .An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints[J].IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601.DOI:10.1109/TEVC.2013.2281535.

4.1部分代码

close all
clear
clc
dbstop if all error
addpath("./NSGA3/")
global G S E
MultiObj= fun_info();%获取无人机模型信息
params.maxgen=100;  % 最大迭代次数
params.Np=50;      % 种群大小
params.Nr=100;      %外部存档大小(不得小于种群大小)
[Xbest,Fbest] = NSGA3(params,MultiObj);
%% 获取算法得到的所有路径存于Result中
for i=1:size(Xbest,1)
    global_best = round(Xbest(i,:));
    route = [S(1) global_best E(1)];
    path=generateContinuousRoute(route,G);
    % path=shortenRoute(path);
    path=GenerateSmoothPath(path,G);
    Result(i).BestPosition= path;
    Result(i).BestFit=Fbest(i,:);
end

%% 获取 路径成本最小 与 平滑成本最小
if size(Fbest,1)>1
    idx=min(Fbest);
else
    idx=Fbest;
end
KK=find(Fbest(:,1)==idx(1));
IDX(1)=KK(1);
KK=find(Fbest(:,2)==idx(2));
IDX(2)=KK(1);


%%  画图pareto前沿图
dbclear all
figure
plot(Fbest(:,1),Fbest(:,2),'r*');
xlabel('路径成本')
ylabel('平滑成本')
legend('NSGA3')

4.2部分结果

五、完整MATLAB代码

见下方联系方式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2094228.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python函数(11自定义模块第三方模块内置模块)

Python基础语法文章导航: Python基础(01初识数据类型&变量)Python基础(02条件&循环语句)Python基础(03字符串格式化&运算符&进制&编码)Python基础(04 基础练习…

定时器方案:时间表盘

目录 一:前言 二:手搓时间表盘 1、任务结点,层级,表盘的结构体 2、表盘的初始化 3、添加定时任务 4、删除定时任务 5、检查任务是否超时 6、清空任务 一:前言 我之前有两篇文章是写定时器方案的,大家…

智菜谱推|基于SprinBoot+vue的智能菜谱推荐系统(源码+数据库+文档)

智能菜谱推荐系统 基于SprinBootvue的智能菜谱推荐系统 一、前言 二、系统设计 三、系统功能设计 系统功能实现 管理员功能模块实现 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂…

【开源免费】基于SpringBoot+Vue.JS渔具租赁系统(JAVA毕业设计)

本文项目编号 T 005 ,文末自助获取源码 \color{red}{T005,文末自助获取源码} T005,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 渔…

低空经济概念火爆:无人机飞手人才培养先行

随着科技的飞速发展,低空经济作为新兴的经济形态,正以前所未有的速度崛起,成为推动产业升级和经济发展的新引擎。无人机作为低空经济的重要组成部分,其应用领域已从最初的军事侦察、航拍扩展到农业植保、物流配送、环境监测、应急…

使用corrplot绘制行、列不同,且带有p值显著性标注的相关系数图

导读: 相关系数衡量两个变量之间的线性关系,通常以N*N的矩阵形式展示。例如样品vs样品,或者基因vs基因的相关性。本文介绍了使用corrplot R包绘制M*N的相关系数矩阵,例如M个基因表达与N个代谢物信号间的相关性,同时带…

国产芯片+国产操作系统打造办公系统

在《使用国产操作系统作为开发系统》一文中,我介绍了将开发系统从 Ubuntu 替换为 Deepin 系统的过程。经过一个多月的使用,Deepin 系统已然成为我的主力开发平台,其顺手程度让我对国产操作系统的信心大增。于是,我开始将目光瞄向公…

顶级开源许可证详解

目录 软件许可证类型:版权左派和宽容型 顶级开源许可证详解 GNU 通用公共许可证 (GPL) Apache 许可证 Microsoft 公共许可证 (Ms-PL) 伯克利软件发行版 (BSD) 通用开发和分发许可证 (CDDL) Eclipse 公共许可证 (EPL) MIT 许可证 了解你的开源许可证&#…

java编辑器——IntelliJ IDEA

java编辑器有两种选择——IntelliJ IDEA和VsCode。其中IntelliJ IDEA现在是企业用的比较多的,是专门为java设计的,而VsCode则是通过插件来实现Java编辑的。 1.IntelliJ IDEA 官网下载链接:https://www.jetbrains.com/idea/ 注意选择社区版…

AWS-亚马逊网络服务(基础服务)-AWS 定价计算器-概述与动手部署:

让我们来概述并亲身实践如何使用 AWS 定价计算器来计算 概述: AWS 定价计算器是 Amazon Web Services (AWS) 提供的基于 Web 的工具,可帮助用户估算其特定用例的 AWS 服务成本。欢迎来到雲闪世界。 它允许客户建模他们的基础设施并根据他们打算使用的…

【AI 绘画】更快?更省显存?支持 FLUX?使用绘世启动器安装 SD WebUI Forge

使用绘世启动器安装 SD WebUI Forge 下载绘世启动器 绘世启动器下载地址1:https://gitee.com/licyk/term-sd/releases/download/archive/hanamizuki.exe 绘世启动器下载地址2:https://www.bilibili.com/video/BV1ne4y1V7QU 新建一个文件夹取名sd-webui-…

中仕公考怎么样?公务员考试什么时候补录?

公务员考试补录的时间和方法通常因地区和职位的不同有所区别,一般来说,这一过程会在面试、体检和考核环节完成后启动。 如果在招录过程中出现职位空缺或者并未全部招满的情况,就会进行补录。用人单位会通过其官方或公告形式公布相关信息&…

指针5.回调函数与qsort

今天来学习回调函数与qsort 目录 1.回调函数实现模拟计算器代码的简化原代码运行结果简化代码运行结果 qsort函数排序整型数据代码运行结果 qsort排序结构数据代码 qsort函数的模拟实现代码运行结果 总结 1.回调函数 回调函数就是⼀个通过函数指针调用的函数。 如果你把函数的…

JavaEE第22节 TCP段(报文)结构剖析

目录(关于字段有不理解的,哪里不会点哪里😘) 逻辑结构字段解析一、源端口&目的端口二、序号&确认序号三、头部长度四、保留位五、特殊标志位六、窗口大小七、校验和八、紧急指针九、可选选项十、数据 逻辑结构 如图&…

入门Java编程的知识点—>Http协议(day20)

了解http协议是什么掌握http请求信息、响应信息格式 项目目标: 实现本地客户端与服务器一问一答的请求与响应,了解http协议即可. 项目步骤: 服务器端代码编写 先在当前src文件下新建一个包: webserver,再该包下创建一个类Server,书写代码如…

带着耐心细心平常心和编程共舞

编程是什么?一个工具、一门技术还是一个爱好,不同的对待方法会带来不同的心态、产生不同的结果。编程需要扎实的基础、严密的思维和开阔的视角,新技术和框架日新月异,只有抱着科学、乐在其中的态度才能掌握高效的学习、实践方法。…

Matrix:重塑APM领域,以简驭繁的性能监控新纪元

在数字化转型的浪潮中,应用程序的性能监控(APM)已成为企业IT架构中不可或缺的一环。随着业务复杂度的提升和用户对体验要求的日益增高,如何高效、精准地监控并优化应用性能,成为了每个开发者和技术团队面临的重大挑战。…

机器学习(五) -- 监督学习(8) --神经网络1

系列文章目录及链接 上篇:机器学习(五) -- 无监督学习(2) --降维2 下篇: 前言 tips:标题前有“***”的内容为补充内容,是给好奇心重的宝宝看的,可自行跳过。文章内容被…

2.3导数与微分的基础与应用

1. 导数的基本概念 大家好,欢迎来到我们的数学大讲堂!今天我们要聊聊一个有点酷又有点恐怖的东西——导数。别担心,不是让你在黑板上画曲线的那种,而是关于“变化率”的一种数学表达。 那么,什么是导数呢&#xff1f…

利用实用规模量子计算模拟宇宙中最极端的环境

华盛顿大学和劳伦斯伯克利国家实验室最近的研究展示了可扩展的技术,有朝一日可以实现最高能量下的基础物理实验模拟。 目录 核物理和高能物理的实用规模模拟 我们的模拟方法 Qiskit 如何使我们的实验成为可能 展望量子模拟技术的未来 粒子物理学的标准模型囊括了我们…