1. C++11简介
在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于
C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中
约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。相比较而言,
C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更
强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多,所以我们要作为一个
重点去学习。C++11增加的语法特性非常篇幅非常多,我们这里没办法一 一讲解,所以本节课程
主要讲解实际中比较实用的语法。
C++11 - cppreference.com
小故事:
1998年是C++标准委员会成立的第一年,本来计划以后每5年视实际需要更新一次标准,C++国际
标准委员会在研究C++ 03的下一个版本的时候,一开始计划是2007年发布,所以最初这个标准叫
C++ 07。但是到06年的时候,官方觉得2007年肯定完不成C++ 07,而且官方觉得2008年可能也
完不成。最后干脆叫C++ 0x。x的意思是不知道到底能在07还是08还是09年完成。结果2010年的
时候也没完成,最后在2011年终于完成了C++标准。所以最终定名为C++11。
2. 统一的列表初始化
2.1 {}初始化
在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定.
struct Point
{
int _x;
int _y;
};
int main()
{
int array1[] = { 1, 2, 3, 4, 5 };
int array2[5] = { 0 };
Point p = { 1, 2 };
return 0;
}
C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自
定义的类型,使用初始化列表时,可添加等号(=),也可不添加(允许不加等号的语法有点.....)。
struct Point
{
int _x;
int _y;
};
int main()
{
int x1 = 1;
int x2{ 2 };
int array1[]{ 1, 2, 3, 4, 5 };
int array2[5]{ 0 };
Point p{ 1, 2 };
// C++11中列表初始化也可以适用于new表达式中
int* pa = new int[4]{ 0 };
return 0;
}
创建对象时也可以使用列表初始化方式调用构造函数初始化
class Date
{
public:
Date(int year, int month, int day)
:_year(year)
, _month(month)
, _day(day)
{
cout << "Date(int year, int month, int day)" << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1(2022, 1, 1); // old style
// C++11支持的列表初始化,这里会调用构造函数初始化
Date d2{ 2022, 1, 2 };
Date d3 = { 2022, 1, 3 };
return 0;
}
2.2 std::initializer_list
std::initializer_list 的介绍文档:
http://www.cplusplus.com/reference/initializer_list/initializer_list/
std::initializer_list 是什么类型:
std::initializer_list 底层如何运作:
我们模拟实现一个 vector 演示效果
namespace my
{
template<class T>
class vector {
public:
typedef T* iterator;
// initializer_list 拷贝
vector(initializer_list<T> l)
{
// 先给 vector 准备足够的空间
_start = new T[l.size()];
_finish = _start + l.size();
_endofstorage = _start + l.size();
// initializer_list 就像一个顺序表,借助 initializer_list 的指针,遍历 initializer_list ,将 里面的数据拷贝到vector中
iterator vit = _start;
typename initializer_list<T>::iterator lit = l.begin();
while (lit != l.end())
{
*vit++ = *lit++;
}
//for (auto e : l)
// *vit++ = e;
}
// 先构造一个 tmp:调用上面的 initializer_list 拷贝
vector<T>& operator=(initializer_list<T> il) {
vector<T> tmp(il);
std::swap(_start, tmp._start);
std::swap(_finish, tmp._finish);
std::swap(_endofstorage, tmp._endofstorage);
return *this;
}
private:
iterator _start;
iterator _finish;
iterator _endofstorage;
};
}
std::initializer_list 应用演示:
int main() {
vector<int>v1 = { 3, 4, 5, 6 };
initializer_list<int> mylist = { 3, 4, 5, 6 }; // 核心是两个指针在栈上框住一块区域,该区域中存储这些数据,因此mylist 里面只存储了一个指向开头和指向结尾的指针
cout << sizeof(mylist) << '\n'; // mylist 大小为 8:存储两个指针,而不是其中的内容
cout << mylist.begin() << '\n';
cout << mylist.end() << '\n';
return 0;
}
std::initializer_list使用场景:
std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加
std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=
的参数,这样就可以用大括号赋值
3. 声明
c++11提供了多种简化声明的方式,尤其是在使用模板时。
3.1 auto
在 C++98 中 auto 是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局
部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃 auto 原来的用法,将
其用于实现自动类型判断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初
始化值的类型。
int main()
{
int i = 10;
auto p = &i;
auto pf = strcpy;
cout << typeid(p).name() << endl;
cout << typeid(pf).name() << endl;
map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
//map<string, string>::iterator it = dict.begin();
auto it = dict.begin();
return 0;
}
3.2 decltype
关键字decltype将变量的类型声明为表达式指定的类型。
这个可以推导目标的类型:可以放一个表达式或变量进去,自动推导类型给你
如 map<string, string> 太长,不想直接写到 vector 中,可以直接通过 decltype 推导 auto 的类型来得出结果
int main() {
map<string, string>dict = { {"sort", "排序"}, {"insert", "插入"} };
auto it = dict.begin();
vector<decltype(it)> v;
return 0;
}
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret; // 推断表达式 t1*t2
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // ret的类型是double
decltype(&x) p; // p的类型是int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}
3.3 nullptr
由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示
整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
因为 NULL 宏定义为 0,下面函数重载匹配就会错配
void func(int x)
{
cout << "void func(int x)" << endl;
}
void func(int* p)
{
cout << "void func(int* p)" << endl;
}
int main()
{
func(NULL);
//func(((void*)0));
/*void* p2 = 0;
int* p1 = p2;*/
func(nullptr);
return 0;
}
4. 范围for循环
这个我们在前面的课程中已经进行了非常详细的讲解,这里就不进行讲解了,请参考C++入门
+STL容器部分的课件讲解。
5. 智能指针
这个我们在智能指针章节中已经会进行了非常详细的讲解,这里就不进行讲解了
在我们后面的博客中,在陆续更新中
6. STL中一些变化
新容器
用橘色圈起来是C++11中的一些几个新容器,但是实际最有用的是unordered_map和
unordered_set。这两个我们前面已经进行了非常详细的讲解,其他的大家了解一下即可。
容器中的一些新方法
如果我们再细细去看会发现基本每个容器中都增加了一些C++11的方法,但是其实很多都是用得
比较少的。
比如提供了cbegin和cend 方法返回const迭代器等等,但是实际意义不大,因为begin和end也是
可以返回const迭代器的,这些都是属于锦上添花的操作。
实际上C++11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本