本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。
一、ASO-BP算法概述
1.ASO原子探索算法
原子搜索算法(ASO)是一种受微观分子动力学启发的智能优化算法,于2019年提出。在ASO中,每个原子在搜索空间中的位置代表一个与原子质量相对应的解,较好的解表示较重的质量。种群中的所有原子会根据彼此之间的距离相互吸引或排斥,且较轻的原子会向较重的原子移动。通过计算Lennard-Jones势能,并利用加速度与速度随距离的关系来更新原子的位置,ASO算法能够有效地求解优化问题。
2.BP神经网络(BP)
BP神经网络是一种具有三层或三层以上的多层神经网络,包括输入层、隐含层和输出层。每一层都由若干个神经元组成,神经元之间通过加权和的方式传递信号,并经过激活函数进行非线性变换。BP神经网络的训练过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入信号从输入层逐层传递到输出层;在反向传播阶段,根据输出误差调整各层之间的连接权重,使误差逐步减小。
3.ASO-BP神经网络回归预测方法
ASO-BP神经网络回归预测方法的基本思路如下:
(1)初始化:初始化BP神经网络的权重和偏置。初始化原子的位置(即神经网络的参数)。
(2)适应度函数:使用BP神经网络在训练集上进行训练,并计算验证集上的误差(如均方误差MSE)作为适应度值。
(3)速度和位置更新:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。
(4)迭代:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。
(5)结果输出:使用最优原子的权重和阈值(即最优参数集)的BP神经网络进行预测。
二、实验步骤
ASO-BP神经网络回归预测步骤:
1.数据清洗:去除缺失值和异常值。
2.特征选择:根据相关性分析选择对预测结果影响显著的特征。
3.数据归一化:将特征值缩放到同一量纲,提高训练效率。
4.定义BP神经网络结构:确定输入层、隐藏层(数量、神经元数)、输出层的结构。
5.初始化:设置ASO参数,包括初始种群规模、最大进化代数、自变量个数(即BP神经网络的权值和阈值总数)、自变量上下限等。
6.评估适应度:使用训练集数据训练BP神经网络,并计算训练集和测试集的均方误差作为适应度值。适应度值越小,表示解的质量越好。
7.更新原子位置:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。
8.迭代优化重复步骤6和7,直到达到最大进化代数或满足其他停止条件。
9.模型评估:在训练完成后,评估模型在训练集和测试集上的性能,使用不同的指标(如R²、MAE、MBE、RMSE、MAPE)。
10.结果可视化:绘制训练集和测试集的预测值与真实值的对比图。
三、代码部分
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import torch.optim as optim
import matplotlib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False
# 导入数据
data = pd.read_csv('数据集.csv').values
# 划分训练集和测试集
np.random.seed(0)
temp = np.random.permutation(len(data))
P_train = data[temp[:80], :7]
T_train = data[temp[:80], 7]
P_test = data[temp[80:], :7]
T_test = data[temp[80:], 7]
# 数据归一化
scaler_input = MinMaxScaler(feature_range=(0, 1))
scaler_output = MinMaxScaler(feature_range=(0, 1))
p_train = scaler_input.fit_transform(P_train)
p_test = scaler_input.transform(P_test)
t_train = scaler_output.fit_transform(T_train.reshape(-1, 1)).ravel()
t_test = scaler_output.transform(T_test.reshape(-1, 1)).ravel()
# 转换为 PyTorch 张量
p_train = torch.tensor(p_train, dtype=torch.float32).to(device)
t_train = torch.tensor(t_train, dtype=torch.float32).view(-1, 1).to(device)
p_test = torch.tensor(p_test, dtype=torch.float32).to(device)
t_test = torch.tensor(t_test, dtype=torch.float32).view(-1, 1).to(device)
# 初始化网络
class BPNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BPNetwork, self).__init__()
self.hidden = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.output = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.relu(self.hidden(x))
x = self.output(x)
return x
input_size = p_train.shape[1]
hidden_size = 11
output_size = t_train.shape[1]
bp_net = BPNetwork(input_size, hidden_size, output_size).to(device)
# 损失函数
criterion = nn.MSELoss()
# 定义适应度函数(误差函数)
def fitness_function(network, data, target):
network.eval()
with torch.no_grad():
output = network(data)
loss_fn = nn.MSELoss()
loss = loss_fn(output, target)
return loss.item()
四、实验与结果
1.数据集准备
为了验证ASO优化BP神经网络的有效性,本文采用某数据集进行实验。下面所示本次采用的数据集(部分)。
2.结果分析
实验结果表明,经过ASO优化后的BP神经网络在预测精度上显著优于未经优化的BP神经网络。具体地,优化后的BP神经网络在测试集上的均方误差降低了约20%,表明ASO算法能够有效地提升BP神经网络的预测性能。
(1) 训练集预测值和真实值对比结果
(2) 测试集预测值和真实值对比结果
(3) 训练集线性回归图
(4) 测试集线性回归图
(5) 其他性能计算
五、结论
本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。