一种基于YOLOv10的高精度光伏板缺陷检测算法(原创自研),适用缺陷检测场景、小缺陷场景

news2024/11/18 1:32:07

 💡💡💡本文原创自研算法:一种基于YOLOv10的高精度光伏板缺陷检测算法,魔改SPPF_attention+一种新颖的基于内容引导注意力(CGA)的混合融合mAP50从原始的0.838提升至0.868  

 💡💡💡

消融实验如下:

 💡💡💡SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息,mAP50从原始的0.838提升至0.85。

💡💡💡一种新颖的基于内容引导注意力(CGA)的混合融合,IEEE TIP 2024 浙大mAP50从原始的0.838提升至0.85

  博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9、v10优化创新,涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

《YOLOv9魔术师》

​《YOLOv10魔术师》 ​

23年最火系列,加入24年改进点内涵100+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

 1.YOLOv10介绍

论文: https://arxiv.org/pdf/2405.14458

代码: GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

摘要:在过去的几年里,由于其在计算成本和检测性能之间的有效平衡,YOLOS已经成为实时目标检测领域的主导范例。研究人员已经探索了YOLOS的架构设计、优化目标、数据增强策略等,并取得了显著进展。然而,对用于后处理的非最大抑制(NMS)的依赖妨碍了YOLOS的端到端部署,并且影响了推理延迟。此外,YOLOS中各部件的设计缺乏全面和彻底的检查,导致明显的计算冗余,限制了模型的性能。这导致次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLOS的性能-效率边界。为此,我们首先提出了用于YOLOs无NMS训练的持续双重分配,该方法带来了有竞争力的性能和低推理延迟。此外,我们还介绍了YOLOS的整体效率-精度驱动模型设计策略。我们从效率和精度两个角度对YOLOS的各个组件进行了全面优化,大大降低了计算开销,增强了性能。我们努力的成果是用于实时端到端对象检测的新一代YOLO系列,称为YOLOV10。广泛的实验表明,YOLOV10在各种模型规模上实现了最先进的性能和效率。例如,在COCO上的类似AP下,我们的YOLOV10-S比RT-DETR-R18快1.8倍,同时具有2.8倍更少的参数和FLOPS。与YOLOV9-C相比,YOLOV10-B在性能相同的情况下,延迟减少了46%,参数减少了25%。

​​​

1.1  C2fUIB介绍

为了解决这个问题,我们提出了一种基于秩的块设计方案,旨在通过紧凑的架构设计降低被证明是冗余的阶段复杂度。我们首先提出了一个紧凑的倒置块(CIB)结构,它采用廉价的深度可分离卷积进行空间混合,以及成本效益高的点对点卷积进行通道混合

C2fUIB只是用CIB结构替换了YOLOv8中 C2f的Bottleneck结构

实现代码ultralytics/nn/modules/block.py

​​​

​​​

class CIB(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv1(x) if self.add else self.cv1(x)

class C2fCIB(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))

1.2  PSA介绍

具体来说,我们在1×1卷积后将特征均匀地分为两部分。我们只将一部分输入到由多头自注意力模块(MHSA)和前馈网络(FFN)组成的NPSA块中。然后,两部分通过1×1卷积连接并融合。此外,遵循将查询和键的维度分配为值的一半,并用BatchNorm替换LayerNorm以实现快速推理。

实现代码ultralytics/nn/modules/block.py

​​​

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8,
                 attn_ratio=0.5):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim ** -0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        B, _, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, -1, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)

        attn = (
            (q.transpose(-2, -1) @ k) * self.scale
        )
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + self.pe(v.reshape(B, -1, H, W))
        x = self.proj(x)
        return x

class PSA(nn.Module):

    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert(c1 == c2)
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
        
        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(
            Conv(self.c, self.c*2, 1),
            Conv(self.c*2, self.c, 1, act=False)
        )
        
    def forward(self, x):
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))

1.3 SCDown

OLOs通常利用常规的3×3标准卷积,步长为2,同时实现空间下采样(从H×W到H/2×W/2)和通道变换(从C到2C)。这引入了不可忽视的计算成本O(9HWC^2)和参数数量O(18C^2)。相反,我们提议将空间缩减和通道增加操作解耦,以实现更高效的下采样。具体来说,我们首先利用点对点卷积来调整通道维度,然后利用深度可分离卷积进行空间下采样。这将计算成本降低到O(2HWC^2 + 9HWC),并将参数数量减少到O(2C^2 + 18C)。同时,它最大限度地保留了下采样过程中的信息,从而在减少延迟的同时保持了有竞争力的性能。

实现代码ultralytics/nn/modules/block.py

class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

    def forward(self, x):
        return self.cv2(self.cv1(x))

 2.光伏板缺陷检测识别数据集介绍    

光伏板缺陷检测数据集大小1920张,数据集共包含划痕、断栅与脏污三类缺陷。

细节图如下:

 

3.YOLOv10魔改提升精度

3.1原始结果

原始YOLOv10n结果如下:

原始mAP50为0.838 

YOLOv10n summary (fused): 285 layers, 2695586 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:16<00:00,  1.13s/it]
                   all        480        528      0.829      0.773      0.838      0.424
                 Crack        480        180      0.832      0.778      0.806      0.424
                  Grid        480        180      0.833      0.828       0.86      0.433
                  Spot        480        168      0.822      0.712      0.848      0.416

3.2 SPPF原创自研 | SPPF_attention,重新设计加入注意力机制

原文链接: YOLOv10涨点改进:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息_yolov10sppf改进-CSDN博客

 💡💡💡本文原创自研创新改进:

优点:为了利用不同的池化核尺寸提取特征的方式可以获得更多的特征信息,提高网络的识别精度。

如何优化:在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息从而获取全局视角信息并减轻不同尺度大小所带来的影响

强烈推荐,适合直接使用,paper创新级别

💡💡💡 在多个数据集验证涨点,尤其对存在多个尺度的数据集、小目标数据集涨点明显

SPPF_attention改进结构图如下:

改进结果如下:

原始mAP50为0.838提升至0.847 

YOLOv10n-SPPF_attention summary (fused): 294 layers, 3221924 parameters, 0 gradients, 8.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:20<00:00,  1.37s/it]
                   all        480        528      0.815      0.792      0.847      0.432
                 Crack        480        180      0.775      0.783      0.817      0.425
                  Grid        480        180      0.813      0.844      0.846      0.431
                  Spot        480        168      0.857      0.748      0.879      0.441

 

 3.3 一种基于内容引导注意力(CGA)的混合融合,IEEE TIP 2024 浙大

原文链接:YOLOv10涨点改进: 特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合,实现暴力涨点 | IEEE TIP 2024 浙大_yolov10 插入ggca-CSDN博客 

  💡💡💡创新点:提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。

改进结果如下:

原始mAP50为0.838提升至0.85

YOLOv10n-CGAFusion summary (fused): 327 layers, 2848707 parameters, 0 gradients, 8.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:17<00:00,  1.17s/it]
                   all        480        528       0.84      0.791       0.85      0.424
                 Crack        480        180      0.856      0.828      0.828      0.436
                  Grid        480        180      0.817      0.789      0.845      0.437
                  Spot        480        168      0.847      0.756      0.877      0.401

3.4 一种基于YOLOv10的高精度光伏板缺陷检测算法(原创自研) 

一种基于YOLOv10的高精度光伏板缺陷检测算法,魔改SPPF_attention+一种新颖的基于内容引导注意力(CGA)的混合融合mAP50从原始的0.838提升至0.868  

 

mAP50从原始的0.838提升至0.868  

YOLOv10n-CGAFusion-SPPF_attention summary (fused): 336 layers, 3375045 parameters, 0 gradients, 8.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 30/30 [00:35<00:00,  1.17s/it]
                   all        480        528      0.861      0.781      0.868      0.429
                 Crack        480        180      0.863      0.771      0.818      0.427
                  Grid        480        180      0.869      0.828      0.885      0.442
                  Spot        480        168      0.851      0.744      0.901      0.418

4.系列篇

1)一种新颖的基于内容引导注意力(CGA)的混合融合助力缺陷检测

2)加入SPPF原创自研 | SPPF_attention,重新设计加入注意力机制提升缺陷检测能力 

3) 一种基于YOLOv10的高精度光伏板缺陷检测算法(原创自研)

欢迎点赞关注  订阅专栏,文末附微信!!!

欢迎点赞关注  订阅专栏,文末附微信!!!

欢迎点赞关注  订阅专栏,文末附微信!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2087759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3D Tiles的4x4的仿射变换矩阵

前言 项目需要&#xff0c;使用Cesium技术&#xff0c;把STL格式模型加载进去。 一、格式转换 第一步&#xff0c;先将STL文件转换为glTF格式 第二步&#xff0c;将glTF文件转换为3D Tiles格式&#xff0c;使用Cesium ion 二、矩阵整体结构 这个矩阵是一个4x4的仿射变换矩阵&…

探索多模态人工智能:融合视觉、语言与声音的未来智能系统

前言 在这个信息爆炸的时代&#xff0c;人工智能&#xff08;AI&#xff09;已经渗透到我们生活的每一个角落&#xff0c;从智能手机的语音助手到自动驾驶汽车&#xff0c;再到医疗诊断和个性化推荐系统。然而&#xff0c;随着技术的进步&#xff0c;我们对智能系统的要求也在不…

[LLM][Prompt Engineering]:大语言模型上下文学习-What、How、Why?

上下文学习 上下文学习什么是上下文学习2. 示例的选择2.1 相关度排序2.2 集合多样性2.3 大语言模型 3. 示例格式3.1 人工标注3.2 利用大语言模型自动生成 4. 示例顺序5. 上下文学习为什么可以work5.1 能力来源5.2 ICL的能力 Reference 在GPT-3的论文中&#xff0c;OpenAI 研究团…

深度学习示例1-全零通道的 MNIST 数据训练模型

一、代码示例 from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist import numpy as np(train_images, train_labels), _ = mnist.load_data() train_images = train_images.reshape((60000, 28 * 28)) train_ima…

基于FPGA的OV5640摄像头图像采集

1.OV5640简介 OV5640是OV&#xff08;OmniVision&#xff09;公司推出的一款CMOS图像传感器&#xff0c;实际感光阵列为&#xff1a;2592 x 1944&#xff08;即500w像素&#xff09;&#xff0c;该传感器内部集成了图像出炉的电路&#xff0c;包括自动曝光控制&#xff08;AEC…

基于深度学习的单目标跟踪系统

基于深度学习的单目标跟踪&#xff0c;效果吊打传统算法&#xff0c;3060显卡上达到实时&#xff0c;代码python和c两个版本都有。 基于深度学习的单目标跟踪系统是一种先进的计算机视觉技术&#xff0c;它可以实现实时的、高精度的目标跟踪。与传统的基于特征匹配或模板匹配的…

实现A-Z滑动检索菜单

写个这小玩意真麻烦 <template><div id"letterPeo"><!-- <button click"getasd">获取</button>--><div class"letter"><div v-for"(item, index) in letter" :key"index" clas…

高速接口IO片上SSN分析方法

Gbps信号在当今的高速IO设计中非常常见。由于封装和板上的寄生电感&#xff0c;高速信号在高频下汲取电流&#xff0c;导致大的电源尖峰或骤降。像DDR5这样的并行总线接口有20多个高速IO一起切换&#xff0c;导致同时切换噪声&#xff08;SSN&#xff09;。SSN的不期望的产物是…

苹果手机怎么恢复微信聊天记录?原来这4个方法这么好用

苹果手机的微信聊天记录不见了怎么办&#xff1f;想要解决这个问题&#xff0c;可以先了解一下导致聊天记录消失的原因有哪些。 误触手机&#xff1a;我们有时误触到某个按钮&#xff0c;也可能恢复导致聊天记录消失。卸载微信&#xff1a;卸载微信后&#xff0c;重新安装再打…

国密起步5:GmSSL3交叉编译arm64

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 之前已经建立好了交叉编译环境…

让 Jenkins 到极狐GitLab 的迁移变得更加简单

极狐GitLab 是 GitLab 在中国的发行版&#xff0c;可以私有化部署&#xff0c;对中文的支持非常友好&#xff0c;是专为中国程序员和企业推出的企业级一体化 DevOps 平台&#xff0c;一键就能安装成功。安装详情可以查看官网指南。 文章原文可以点击极狐GitLab 官方资源中心查…

利用短信群发平台时提升短信营销打开率的关键因素

尽管众多企业依赖短信群发平台作为营销手段&#xff0c;但短信的实际打开率往往不尽如人意。以下是几个显著影响短信营销效果的关键因素及其优化策略&#xff1a; 1. 谨慎选择用词&#xff0c;规避敏感词汇 现代智能手机普遍配备了智能拦截功能&#xff0c;对包含特定敏感词汇…

C++宏展开

感觉自己一直对C的宏展开没有细致地研究过&#xff0c;这两天深入地学习了一下&#xff0c;做个笔记。 文章目录 宏展开基本规则宏嵌套展开补充说明参考资料 首先明确宏展开&#xff0c;是在预处理阶段进行的&#xff0c;进入编译期就是宏展开之后的代码了&#xff0c;所以不会…

基于Flask的新冠疫情信息可视化查询系统【案例模板】

文章目录 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主每文一语 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主 本项目是一个案例学习项目&#xff0c;可以作为新手进行学习系统的框架&#xff0c;本项目有数据库…

Git 学习

一、基本使用 1. 基本理论 Git 是一个免费的、开源的分布式版本控制系统&#xff0c;可以快速高效地处理从小型到大型的项目&#xff1b;版本控制是一种记录一个或者若干个文件内容变化&#xff0c;以便来查阅特定版本修订情况的系统 集中化版本控制系统&#xff1a;SVN, CV…

单片机使用cJSON的坑

文章目录 问题解决办法方法一方法二 问题 单片机USAR串口通信我想用json&#xff0c; 我不想用 分隔符的方式。感觉性能够&#xff0c;还有就是方便理解。 mcu型号 : AT32F415系列 雅特力的。 cJSON库: https://github.com/DaveGamble/cJSON/tree/master 只要把 cJSON.h 和 c…

云计算实训39——Harbor仓库的使用、Docker-compose的编排、YAML文件

一、Harbor部署 1.验证python版本 [rootdocker2 ~]#python --version 2.安装pip [rootdocker2 ~]# yum -y install python2-pip #由于版本过低&#xff0c;需要对其进行一个升级 #更新pip [rootdocker2 ~]#pip install --upgrade pip 3.指定版本号 [rootdocker2 ~]# p…

geodatatool(地图资源工具)下载高德数据及数据共享

利用geodatatool&#xff08;地图资源工具&#xff09;3.8&#xff08;新&#xff09;下载高德POI数据&#xff1a; 选择类型如下&#xff1a; 数据效果如下&#xff0c;由于用的免费的key&#xff0c;所以可能数据下载还不完全&#xff0c;但已经很多了&#xff1a; 下载数据…

小模型大智慧!港大重磅开源EasyRec,推荐系统进入语言模型时代

在当今的信息时代&#xff0c;我们每天都被海量信息所包围&#xff0c;不断面临各种选择。从网上购物、音乐播放到视频推荐&#xff0c;推荐系统已经成为我们生活中不可或缺的一部分。那么&#xff0c;这些系统是如何运作的&#xff1f;它们又是如何在信息的洪流中帮助我们找到…

《使用 LangChain 进行大模型应用开发》学习笔记(一)

前言 本文是 Harrison Chase &#xff08;LangChain 创建者&#xff09;和吴恩达&#xff08;Andrew Ng&#xff09;的视频课程《LangChain for LLM Application Development》&#xff08;使用 LangChain 进行大模型应用开发&#xff09;的学习笔记。由于原课程为全英文视频课…