本周观看了B站up主霹雳吧啦Wz的图像处理的课程,
课程链接:霹雳吧啦Wz的个人空间-霹雳吧啦Wz个人主页-哔哩哔哩视频
下面是本周的所看的课程总结。
MobileNet V2的代码实现
1、定义ConvBNReLU类,将卷积操作,批量归一化操作,以及ReLU6激活函数封装到类中,padding的计算是保证输入和输出的图片大小不变
class ConvBNReLU(nn.Sequential):
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2 # 保证输入和输出的图片大小不变
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU6(inplace=True)
)
2、定义InvertedResidual类,为到残差结构,首先通过扩展因子,计算出隐藏层的深度,当步长为1且输入通道和输出通道相等时,才会有shortcut连接,紧接着,在当层extendDW卷积,DW卷积就是输入通道与输出通道一致,分组的个数也与通道个数相同,再进行PW卷积,PW卷积后为Linear激活函数,所以不用写入激活函数的代码,最后进行批量归一化操作。
在进行正向传播的过程中,若步长为1且输入通道和输出通道一致,则进行shortcut连接,进行加法操作;反之,直接输出倒残差结构。
class InvertedResidual(nn.Module):
# expand ratio 扩展因子
def __init__(self, in_channel, out_channel, stride, expand_ratio):
super(InvertedResidual, self).__init__()
hidden_channel = in_channel * expand_ratio # 第一层卷积层卷积核的个数
self.use_shortcut = stride == 1 and in_channel == out_channel
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))
layers.extend([
# 3*3 DW 卷积
ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),
# 1*1 PW 卷积(Linear激活函数==不添加激活函数)
nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channel)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_shortcut:
return x + self.conv(x)
else:
return self.conv(x)
3、定义Mobilenetv2类,定义神经网络,首先计算最开始的输出通道与最后的输出通道,经过_make_divisible函数,使得将输入通道数目调整为8的倍数最近的整数值,定义每个block结构的扩展因子,输出通道数目,个数以及stride步长,具体数值如下所示:
紧接着,定义features空列表,先进行第一层卷积操作,再进行循环遍历每个block的扩展因子,输出通道数目,个数以及stride步长,注意,stride步长为2时是只针对该block的第一层,其它层都为1,最后,定义全局平均池化层和全连接层,输出通道数目为需要进行图像分类的类别数目。
class MobileNetV2(nn.Module):
# alpha 卷积核个数的倍率
def __init__(self, num_classes=1000, alpha=1.0, round_nearest=8):
super(MobileNetV2, self).__init__()
block = InvertedResidual
# 将输入通道数调整为8的倍数最近的整数值
input_channel = _make_divisible(32 * alpha, round_nearest) # 第一层卷积层所使用卷积核的个数,下一层的深度
last_channel = _make_divisible(1280 * alpha, round_nearest)
inverted_residual_setting = [
# t,c,n,s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
features = []
# conv1 layer
features.append(ConvBNReLU(3, input_channel, stride=2)) # kernel size 默认为3
# building inverted residual setting
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * alpha, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layer
features.append(ConvBNReLU(input_channel, last_channel, 1))
# combine feature layers
self.features = nn.Sequential(*features)
# building classifier
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
4、进行训练,前面的数据预处理,训练数据集,测试数据集与之前一样,不一样的是将MobileNet V2网络实例化,并冻结除全连接层之外的所有权重
首先先下载MobileNet V2网络的预训练权重,链接:
https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth
net = MobileNetV2(num_classes=5)
model_weight_path = 'mobilenet_v2-pre.pth'
pre_weights = torch.load(model_weight_path)
pre_dict = {k: v for k, v in pre_weights.items() if "classifier" not in k}
# 加载除了最后一层的权重
missing_keys, unexpected_keys = net.load_state_dict(pre_dict, strict=False)
print('missing_keys: {}, unexpected_keys: {}'.format(missing_keys, unexpected_keys))
# 冻结特征提取的权重
for param in net.features.parameters():
param.requires_grad = False
net.to(device)
'''
missing_keys: ['classifier.1.weight', 'classifier.1.bias'], unexpected_keys: []
'''
5、定义优化器,优化器需要优化的参数只有全连接的参数
params = [p for p in net.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(params, lr=0.0001)
6、进行模型训练的代码与前一致,训练5轮后的结果如下所示
'''
epoch [1/5], loss: 1.369: 100%|██████████| 207/207 [00:28<00:00, 7.20it/s]
epoch [1/5], acc: 280.0]: 100%|██████████| 23/23 [00:03<00:00, 7.39it/s]
epoch [1/5], train loss: 1.4112, val acc: 0.7692
Saving new best model
epoch [2/5], loss: 1.058: 100%|██████████| 207/207 [00:15<00:00, 13.05it/s]
epoch [2/5], acc: 299.0]: 100%|██████████| 23/23 [00:01<00:00, 11.91it/s]
epoch [2/5], train loss: 1.1245, val acc: 0.8214
Saving new best model
epoch [3/5], loss: 0.790: 100%|██████████| 207/207 [00:16<00:00, 12.75it/s]
epoch [3/5], acc: 297.0]: 100%|██████████| 23/23 [00:01<00:00, 13.01it/s]
epoch [3/5], train loss: 0.9590, val acc: 0.8159
epoch [4/5], loss: 1.184: 100%|██████████| 207/207 [00:16<00:00, 12.90it/s]
epoch [4/5], acc: 307.0]: 100%|██████████| 23/23 [00:01<00:00, 12.48it/s]
epoch [4/5], train loss: 0.8449, val acc: 0.8434
Saving new best model
epoch [5/5], loss: 0.813: 100%|██████████| 207/207 [00:15<00:00, 13.59it/s]
epoch [5/5], acc: 301.0]: 100%|██████████| 23/23 [00:02<00:00, 11.07it/s]
epoch [5/5], train loss: 0.7603, val acc: 0.8269
Finished Training
'''
7、训练后进行预测,加载模型的参数,预测一张图片
model = MobileNetV2(num_classes=5)
model_weight_path = './MobileNetV2.pth'
model.load_state_dict(torch.load(model_weight_path, map_location=torch.device('cpu')))
model.eval()
with torch.no_grad():
output = model(img)
output = torch.squeeze(output, dim=0)
predict = torch.softmax(output, dim=-1)
idx = torch.argmax(predict, dim=-1).numpy()
print('classes:{}, predict result:{:.3f}'.format(json_str[str(idx)], predict[idx].item()))
'''
classes:tulips, predict result:0.872
'''
MobileNet V3 网络实现图像分类
MobileNet V3是MobileNet系列的第三代模型,进一步优化了计算效率和性能,它相比MobileNet V2的两点为:
- 更新了Block(论文中将MobileNet V3的block称为bneck)。
- 使用NAS搜索参数。
- 重新设计耗时层结构。
并且经过实验测试,MobileNet V3相比MobileNet V2等网络,更加准确,更加高效。
MobileNet V3更新了block,比MobileNet V2中加入了SE模块,也称作注意力机制;并且更新了激活函数。
对于MobileNet V2的block,首先经过1*1的卷积核进行升维,再经过3*3的DW卷积,最后再经过1*1的卷积核进行降维。
对于MobileNet V3 的block,也是bneck,首先还是经过1*1的卷积核升维,再经过3*3的卷积核DW卷积,如果进行注意力机制处理的话,之后对每个通道进行池化处理,后面接两个全连接层,第一个全连接层的节点为输入通道的1/4,第二个全连接层的节点为输入通道,最后输出向量,得到的输出向量也就是相应的权重关系,再与之前DW卷积操作后的特征矩阵矩阵相乘,得到输出矩阵,最后再经过1*1的卷积核进行降维。
其SE模块的实现内容,如下所示,假设输入通道为2,第一步,对每个通道进行平均池化处理,输出两个向量;第二步,进行两个全连接层操作,第一个全连层的输出节点为输入通道的1/4,激活函数为ReLU,第二个全连接层的输出节点为输入通道,激活函数为H-sig,输出两个向量,为权重关系;第三步,将得到的两个输出向量与之前的输入特征矩阵分别进行乘积操作,得到最终的输出矩阵。
MobileNet V3的重新设计耗时层结构如下:
- 减少了第一个卷积层的卷积核个数,由32变为16。
- 精简Last Stage,减少了多余操作。
最终精简的操作,并提高了精度。
为了方便计算,求导,所以需要重新设计激活函数,sigmoid函数求导来说,比较麻烦,所以设计了h-sigmoid来代替sigmoid函数,也就有了h-swish激活函数,本质就是由高精度浮点数据转化为低精度整型数据,如图所示:
MobileNet V3-Large的架构如下,其中表中的
- Input代表输入的shape
- Operator代表需要的操作
- exp size代表需要先升到几维
- #out 代表要降到多少维
- SE 代表 是否使用SE模块,也就是注意力机制
- NL 代表使用的非线性激活函数,HS代表h-swish激活函数,RE代表ReLU激活函数
- s代表操作的步长
需要注意的,第一个bneck,升维和降维的维数一致,所以只有第一个bneck不经过1*1的卷积核,没有升维的操作,直接进行DW卷积操作。
当步长为1且输入维度等于输出维度时候,才有shortcut连接,这样保证了输入和输出的形状一致。
最后的NBN指的是不使用批量归一化结构。
如图所示:
MobileNet V3-Small的架构如下
MobileNet V3的代码实现
1、定义_make_divisible函数,将输入通道数调整为8的倍数最近的整数值
def _make_divisible(ch, divisor=8, min_ch=None):
if min_ch is None:
min_ch = divisor
new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
if new_ch < 0.9 * ch:
new_ch += divisor
return new_ch
2、定义ConvBNActivation类,进行卷积等一系列操作
class ConvBNActivation(nn.Sequential):
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1, norm_layer=None,
activation_layer=None):
padding = int((kernel_size - 1) // 2)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if activation_layer is None:
activation_layer = nn.ReLU6
super(ConvBNActivation, self).__init__(
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
norm_layer(out_channel),
activation_layer(inplace=True)
)
3、定义SE注意力机制模块,由两个全连接层构成,第一个全连接层的输出节点个数是输入通道除以4,第二个全连接层的输出节点是输入通道,且第一个全连接层的激活函数是RELU,第二个全连接层的激活函数是h-sigmoid
class SqueezeExcitation(nn.Module):
def __init__(self, input_c, squeeze_factor=4):
super(SqueezeExcitation, self).__init__()
squeeze_c = _make_divisible(input_c // squeeze_factor, 8)
self.fc1 = nn.Conv2d(input_c, squeeze_c, kernel_size=1)
self.fc2 = nn.Conv2d(squeeze_c, input_c, kernel_size=1)
def forward(self, x):
scale = F.adaptive_avg_pool2d(x, (1, 1))
scale = self.fc1(scale)
scale = F.relu(scale, inplace=True)
scale = self.fc2(scale)
scale = F.hardsigmoid(scale, inplace=True)
return scale * x
4、定义InvertedResidualConfig类,创建MobileNetV3 中的每一个bneck结构的参数配置
class InvertedResidualConfig:
def __init__(self, input_c, kernel, expand_c, out_c, use_se, activation, stride, width_multi=1.0):
self.input_c = self.adjust_channels(input_c, width_multi)
self.kernel = kernel
self.expand_c = self.adjust_channels(expand_c, width_multi)
self.out_c = self.adjust_channels(out_c, width_multi)
self.use_se = use_se
self.use_hs = activation == 'HS'
self.stride = stride
@staticmethod
def adjust_channels(channels, width_multi):
return _make_divisible(channels * width_multi, 8)
5、定义InvertedResidual类,创建block,MobileNet V3中的block为bneck
class InvertedRedisual(nn.Module):
def __init__(self, cnf, norm_layer):
super(InvertedRedisual, self).__init__()
self.use_shortcut = cnf.stride == 1 and cnf.input_c == cnf.out_c
layers = []
activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
if cnf.expand_c != cnf.input_c:
layers.append(ConvBNActivation(cnf.input_c, cnf.expand_c, kernel_size=1, norm_layer=norm_layer,
activation_layer=activation_layer))
layers.append(
ConvBNActivation(cnf.expand_c, cnf.expand_c, kernel_size=cnf.kernel, stride=cnf.stride, groups=cnf.expand_c,
norm_layer=norm_layer, activation_layer=activation_layer))
if cnf.use_se:
layers.append(SqueezeExcitation(cnf.expand_c))
layers.append(
ConvBNActivation(cnf.expand_c, cnf.out_c, kernel_size=1, norm_layer=norm_layer,
activation_layer=nn.Identity))
self.block = nn.Sequential(*layers)
def forward(self, x):
result = self.block(x)
if self.use_shortcut:
result += x
return result
6、定义MobileNet V3类,完整的MobileNet V3架构,如下:
class MobileNetV3(nn.Module):
def __init__(self, inverted_residual_setting, last_channel, num_classes=1000, block=None, norm_layer=None):
super(MobileNetV3, self).__init__()
if block is None:
block = InvertedRedisual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
layers = []
first_output_c = inverted_residual_setting[0].input_c
layers.append(
ConvBNActivation(in_channel=3, out_channel=first_output_c, kernel_size=3, stride=2, norm_layer=norm_layer,
activation_layer=nn.Hardswish))
for cnf in inverted_residual_setting:
layers.append(block(cnf, norm_layer=norm_layer))
lastconv_input_c = inverted_residual_setting[-1].out_c
lastconv_output_c = 6 * lastconv_input_c
layers.append(ConvBNActivation(lastconv_input_c, lastconv_output_c, kernel_size=1, norm_layer=norm_layer,
activation_layer=nn.Hardswish))
self.features = nn.Sequential(*layers)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Sequential(
nn.Linear(lastconv_output_c, last_channel),
nn.Hardswish(inplace=True),
nn.Dropout(0.2, inplace=True),
nn.Linear(last_channel, num_classes)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
7、定义mobilenet_v3_large函数,传入每个block所需的参数,将MobileNet V3实例化
def mobilenet_v3_large(num_classes=1000):
bneck_conf = InvertedResidualConfig
inverted_residual_setting = [
# input_c, kernel, expanded_c, out_c, use_se, activation, stride
bneck_conf(16, 3, 16, 16, False, "RE", 1),
bneck_conf(16, 3, 64, 24, False, "RE", 2), # C1
bneck_conf(24, 3, 72, 24, False, "RE", 1),
bneck_conf(24, 5, 72, 40, True, "RE", 2), # C2
bneck_conf(40, 5, 120, 40, True, "RE", 1),
bneck_conf(40, 5, 120, 40, True, "RE", 1),
bneck_conf(40, 3, 240, 80, False, "HS", 2), # C3
bneck_conf(80, 3, 200, 80, False, "HS", 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1),
bneck_conf(80, 3, 480, 112, True, "HS", 1),
bneck_conf(112, 3, 672, 112, True, "HS", 1),
bneck_conf(112, 5, 672, 160, True, "HS", 2), # C4
bneck_conf(160, 5, 960, 160, True, "HS", 1),
bneck_conf(160, 5, 960, 160, True, "HS", 1),
]
last_channel = 1280
return MobileNetV3(inverted_residual_setting=inverted_residual_setting, last_channel=last_channel,
num_classes=num_classes)
8、进行训练,前面的数据预处理,训练数据集,测试数据集与之前一样,不一样的是将MobileNet V3网络实例化,并冻结除全连接层之外的所有权重
首先先下载MobileNet V3网络的预训练权重,链接:https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
net = mobilenet_v3_large(num_classes=5)
model_weight_path = '../mobilenet_v3_large-pre.pth'
pre_weights = torch.load(model_weight_path)
pre_dict = dict((k, v) for k, v in pre_weights.items() if 'classifier' not in k)
missing_keys, unexpected_keys = net.load_state_dict(pre_dict, strict=False)
print('missing keys:{}, unexpected keys:{}'.format(missing_keys, unexpected_keys))
for param in net.features.parameters():
param.requires_grad = False
net.to(device)
'''
missing keys:['classifier.0.weight', 'classifier.0.bias', 'classifier.3.weight', 'classifier.3.bias'], unexpected keys:[]
'''
9、定义优化器,优化器需要优化的参数只有全连接的参数
loss_function = nn.CrossEntropyLoss()
params = [p for p in net.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(params, lr=0.0001)
10、进行模型训练的代码与前一致,训练10轮后的结果如下所示
'''
epoch [1/10], loss: 0.245: 100%|██████████| 207/207 [00:26<00:00, 7.95it/s]
epoch [1/10], acc: 314.0]: 100%|██████████| 23/23 [00:02<00:00, 7.88it/s]
epoch [1/10], train loss: 0.9173, val acc: 0.8626
Saving new best model
epoch [2/10], loss: 0.528: 100%|██████████| 207/207 [00:15<00:00, 13.42it/s]
epoch [2/10], acc: 321.0]: 100%|██████████| 23/23 [00:01<00:00, 12.45it/s]
epoch [2/10], train loss: 0.5085, val acc: 0.8819
Saving new best model
epoch [3/10], loss: 0.571: 100%|██████████| 207/207 [00:15<00:00, 13.12it/s]
epoch [3/10], acc: 319.0]: 100%|██████████| 23/23 [00:01<00:00, 12.62it/s]
epoch [3/10], train loss: 0.4336, val acc: 0.8764
epoch [4/10], loss: 0.585: 100%|██████████| 207/207 [00:15<00:00, 13.30it/s]
epoch [4/10], acc: 322.0]: 100%|██████████| 23/23 [00:02<00:00, 10.67it/s]
epoch [4/10], train loss: 0.4244, val acc: 0.8846
Saving new best model
epoch [5/10], loss: 1.045: 100%|██████████| 207/207 [00:15<00:00, 13.34it/s]
epoch [5/10], acc: 325.0]: 100%|██████████| 23/23 [00:01<00:00, 12.89it/s]
epoch [5/10], train loss: 0.4052, val acc: 0.8929
Saving new best model
epoch [6/10], loss: 0.091: 100%|██████████| 207/207 [00:15<00:00, 13.32it/s]
epoch [6/10], acc: 328.0]: 100%|██████████| 23/23 [00:01<00:00, 12.69it/s]
epoch [6/10], train loss: 0.4073, val acc: 0.9011
Saving new best model
epoch [7/10], loss: 0.582: 100%|██████████| 207/207 [00:15<00:00, 13.22it/s]
epoch [7/10], acc: 328.0]: 100%|██████████| 23/23 [00:01<00:00, 12.50it/s]
epoch [7/10], train loss: 0.3733, val acc: 0.9011
epoch [8/10], loss: 0.182: 100%|██████████| 207/207 [00:16<00:00, 12.59it/s]
epoch [8/10], acc: 332.0]: 100%|██████████| 23/23 [00:01<00:00, 11.95it/s]
epoch [8/10], train loss: 0.3644, val acc: 0.9121
Saving new best model
epoch [9/10], loss: 0.269: 100%|██████████| 207/207 [00:15<00:00, 13.41it/s]
epoch [9/10], acc: 327.0]: 100%|██████████| 23/23 [00:01<00:00, 12.96it/s]
epoch [9/10], train loss: 0.3692, val acc: 0.8984
epoch [10/10], loss: 1.327: 100%|██████████| 207/207 [00:16<00:00, 12.73it/s]
epoch [10/10], acc: 331.0]: 100%|██████████| 23/23 [00:01<00:00, 11.84it/s]
epoch [10/10], train loss: 0.3705, val acc: 0.9093
Finished Training
'''
11、训练后进行预测,加载模型的参数,预测一张图片
model = mobilenet_v3_large(num_classes=5)
model_weight_path = './MobileNetV3.pth'
model.load_state_dict(torch.load(model_weight_path, map_location=torch.device('cpu')))
model.eval()
with torch.no_grad():
output = model(img)
output = torch.squeeze(output,dim=0)
predict = torch.softmax(output,dim=-1)
idx = torch.argmax(predict,dim=-1).numpy()
print('classes: {}, predict: {}'.format(class_indices[str(idx)],predict[idx]))
'''
classes: tulips, predict: 0.9999997615814209
'''
R-CNN
R-CNN是利用深度学习进行目标检测的开山之作,R-CNN全称(Region with CNN feature),RCNN算法流程分为4个步骤:
- 利用Selective Search方法将一张图片生成1k到2k个候选区域。
- 对每个候选区域,使用深度网络提取特征。
- 特征送入每一类的SVM 分类器,判别是否属于该类。
- 使用回归器精细修正候选框位置。
对于候选区域的生成,是利用Selective Search算法对图像分割得到一些原始区域,将一张照片生成多个候选区域
对每个候选区域,使用深度网络提取特征,将2000个候选区域使用Resize缩放到227*227像素,将候选区域输入事先训练好的AlexNet CNN网络,而AlexNet第一个FC层的维度为4096,获取4096维的特征,得到2000*4096维的特征矩阵。
其中这2000*4096的特征矩阵的每一行代表一个候选框通过CNN的一个特征向量。
将特征送入每一类的SVM分类器,判定类别,将2000*4096的特征矩阵与20个SVM组成的权值矩阵4096*20相乘,其中4096*20的SVM权值矩阵的每一列代表一个类别的权值向量,也是判断为某个种类的分类器,相乘后得到2000*20维的矩阵表示每个建议框是某个目标类别的得分,2000是框的个数,20是这每个框中对20个种类的预测得分,对每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。
而非极大值抑制剔除重叠建议框简单来说就是寻找该类的最优的锚框。
具体来说,是寻找得分最高的目标,计算其他目标与该目标的IOU值,删除所有IOU值大于给定阈值的目标。
最后是使用回归器精细修正候选框位置,进一步进行筛选,进行回归操作,最终得到每个类别的修正后得分最高的bounding box。
总的来说,R-CNN框架是先利用SS算法进行寻找候选框,利用CNN进行特征提取,利用SVM分类器进行分类,利用回归器修正候选框位置,最终得到最优的候选框以及类别概率。
R-CNN存在的问题如下:
个人总结
本周主要学习了一些图像处理的方法和理论,以及各种网络实现图像分类,下周将继续学习其他的一些模型算法和理论知识,并且阅读相应的文献,理论与实践相结合,继续学习,继续努力,继续进步!