2.数列极限
2.4 收敛准则
上节课举了一个例子 a N = 1 + 1 2 p + 1 3 p + . . . + 1 n p a_{N}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+...+\frac{1}{n^{p}} aN=1+2p1+3p1+...+np1
- p > 1 p>1 p>1, { a n } \{a_{n}\} {an}收敛
- 0 < p ≤ 1 0<p\le 1 0<p≤1, { a n } \{a_{n}\} {an}发散
特别地
p
=
1
,
a
n
=
1
+
1
2
+
1
3
+
.
.
.
+
1
n
p=1,a_{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}
p=1,an=1+21+31+...+n1是正无穷大量
【例2.4.8】
b
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
)
−
ln
n
b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n
bn=(1+21+31+...+n1)−lnn,证明
{
b
n
}
\{b_{n}\}
{bn}收敛。
【证】
(
1
+
1
n
)
n
<
e
<
(
1
+
1
n
)
n
+
1
(1+\frac{1}{n})^{n}<e<(1+\frac{1}{n})^{n+1}
(1+n1)n<e<(1+n1)n+1(上节课推过的,
e
e
e分别是左边的上确界和右边的下确界)
右侧不等式取对数得
1
<
(
n
+
1
)
ln
1
+
n
n
1<(n+1)\ln\frac{1+n}{n}
1<(n+1)lnn1+n
即
1
n
+
1
<
ln
1
+
n
n
\frac{1}{n+1}<\ln\frac{1+n}{n}
n+11<lnn1+n
左侧不等式取对数得
n
ln
1
+
n
n
<
1
n\ln\frac{1+n}{n}<1
nlnn1+n<1
即
ln
1
+
n
n
<
1
n
\ln\frac{1+n}{n}<\frac{1}{n}
lnn1+n<n1
所以
1
n
+
1
<
ln
1
+
n
n
<
1
n
\frac{1}{n+1}<\ln\frac{1+n}{n}<\frac{1}{n}
n+11<lnn1+n<n1
b
n
+
1
−
b
n
=
1
n
+
1
−
ln
(
n
+
1
)
+
ln
n
=
1
n
+
1
−
ln
n
+
1
n
<
0
b_{n+1}-b_{n}=\frac{1}{n+1}-\ln(n+1)+\ln n=\frac{1}{n+1}-\ln\frac{n+1}{n}<0
bn+1−bn=n+11−ln(n+1)+lnn=n+11−lnnn+1<0
则
{
b
n
}
\{b_{n}\}
{bn}是严格单调减少数列
b
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
)
−
ln
n
>
ln
1
+
1
1
+
ln
2
+
1
2
+
.
.
.
+
n
+
1
n
−
ln
n
=
ln
2
+
ln
3
−
ln
2
+
.
.
.
+
ln
(
n
+
1
)
−
ln
n
−
ln
n
=
ln
(
n
+
1
)
−
ln
n
=
ln
n
+
1
n
>
1
n
+
1
>
0
b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n>\ln\frac{1+1}{1}+\ln\frac{2+1}{2}+...+\frac{n+1}{n}-\ln n=\ln 2+\ln 3- \ln2+...+\ln(n+1)- \ln n- \ln n=\ln(n+1)-\ln n=\ln\frac{n+1}{n}>\frac{1}{n+1}>0
bn=(1+21+31+...+n1)−lnn>ln11+1+ln22+1+...+nn+1−lnn=ln2+ln3−ln2+...+ln(n+1)−lnn−lnn=ln(n+1)−lnn=lnnn+1>n+11>0
所以
{
b
n
}
\{b_{n}\}
{bn}严格单调减少有下界
由单调有界定理,所以
{
b
n
}
\{b_{n}\}
{bn}收敛。
记
lim
n
→
∞
b
n
=
γ
\lim\limits_{n\to\infty}b_{n}=\gamma
n→∞limbn=γ,称为Euler(欧拉)常数
γ
≈
0.577215...
\gamma\approx0.577215...
γ≈0.577215...
【注】这两个无穷大量相差一个欧拉常数。
【例2.4.9】证明
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
=
ln
2
\lim\limits_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})=\ln 2
n→∞lim(n+11+n+21+...n+nn)=ln2
【证】
b
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
)
−
ln
n
,
lim
n
→
∞
b
n
=
γ
b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n,\lim\limits_{n\to\infty}b_{n}=\gamma
bn=(1+21+31+...+n1)−lnn,n→∞limbn=γ
b
2
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
2
n
)
−
ln
2
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
+
n
)
−
ln
2
n
b_{2n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n})-\ln 2n=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+n})-\ln 2n
b2n=(1+21+31+...+2n1)−ln2n=(1+21+31+...+n+n1)−ln2n
b
2
n
−
b
n
=
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
+
ln
n
−
ln
2
n
=
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
+
ln
n
2
n
=
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
−
ln
2
b_{2n}-b_{n}=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})+\ln n-\ln 2n=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})+\ln \frac{n}{2n}=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) -\ln 2
b2n−bn=(n+11+n+21+...n+nn)+lnn−ln2n=(n+11+n+21+...n+nn)+ln2nn=(n+11+n+21+...n+nn)−ln2
由于
lim
n
→
∞
(
b
2
n
−
b
n
)
=
0
\lim\limits_{n\to\infty}(b_{2n}-b_{n})=0
n→∞lim(b2n−bn)=0
所以
lim
n
→
∞
(
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
−
ln
2
)
=
0
\lim\limits_{n\to\infty}((\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) -\ln 2)=0
n→∞lim((n+11+n+21+...n+nn)−ln2)=0
所以
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
.
.
.
n
n
+
n
)
=
ln
2
\lim\limits_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) =\ln 2
n→∞lim(n+11+n+21+...n+nn)=ln2
【例2.4.10】
d
n
=
1
−
1
2
+
1
3
−
1
4
+
.
.
.
+
(
−
1
)
n
+
1
1
n
d_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+(-1)^{n+1}\frac{1}{n}
dn=1−21+31−41+...+(−1)n+1n1,说明
{
d
n
}
\{d_{n}\}
{dn}是否收敛,若收敛,收敛于什么?
【解】
b
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
)
−
ln
n
,
lim
n
→
∞
b
n
=
γ
b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n,\lim\limits_{n\to\infty}b_{n}=\gamma
bn=(1+21+31+...+n1)−lnn,n→∞limbn=γ
b
2
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
2
n
)
−
ln
2
n
=
(
1
+
1
2
+
1
3
+
.
.
.
+
1
n
+
n
)
−
ln
2
n
,
lim
n
→
∞
b
2
n
=
γ
b_{2n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n})-\ln 2n=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+n})-\ln 2n,\lim\limits_{n\to\infty}b_{2n}=\gamma
b2n=(1+21+31+...+2n1)−ln2n=(1+21+31+...+n+n1)−ln2n,n→∞limb2n=γ
用
b
2
n
b_{2n}
b2n中的第
2
k
2k
2k项与
b
n
b_{n}
bn中的第
k
k
k项相减
b
2
n
−
b
n
=
(
1
−
1
2
+
1
3
−
1
4
−
1
6
+
.
.
.
+
1
2
n
−
1
−
1
2
n
)
−
ln
2
=
d
2
n
−
ln
2
b_{2n}-b_{n}=(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-1}-\frac{1}{2n})-\ln 2=d_{2n}-\ln 2
b2n−bn=(1−21+31−41−61+...+2n−11−2n1)−ln2=d2n−ln2
由于
lim
n
→
∞
(
b
2
n
−
b
n
)
=
0
\lim\limits_{n\to\infty}(b_{2n}-b_{n})=0
n→∞lim(b2n−bn)=0
所以
lim
n
→
∞
(
d
2
n
−
ln
2
)
=
0
\lim\limits_{n\to\infty}(d_{2n}-\ln 2)=0
n→∞lim(d2n−ln2)=0
即
lim
n
→
∞
d
2
n
=
ln
2
\lim\limits_{n\to\infty}d_{2n}=\ln 2
n→∞limd2n=ln2
d
2
n
+
1
=
d
2
n
+
(
−
1
)
2
n
+
1
+
1
1
2
n
+
1
=
d
2
n
+
1
2
n
+
1
d_{2n+1}=d_{2n}+(-1)^{2n+1+1}\frac{1}{2n+1}=d_{2n}+\frac{1}{2n+1}
d2n+1=d2n+(−1)2n+1+12n+11=d2n+2n+11
所以
lim
n
→
∞
d
2
n
+
1
=
lim
n
→
∞
(
d
2
n
+
1
2
n
+
1
)
=
ln
2
\lim\limits_{n\to\infty}d_{2n+1}=\lim\limits_{n\to\infty}(d_{2n}+\frac{1}{2n+1})=\ln 2
n→∞limd2n+1=n→∞lim(d2n+2n+11)=ln2
所以
lim
n
→
∞
d
n
=
ln
2
\lim\limits_{n\to\infty}d_{n}=\ln 2
n→∞limdn=ln2(偶数子列和奇数子列收敛于同一个数,则原数列是收敛于这个数)
2.4.4 闭区间套定理
【定义2.4.1】闭区间套是指一列闭区间
{
[
a
n
,
b
n
]
}
\{[a_{n},b_{n}]\}
{[an,bn]}满足:
(1)
[
a
n
+
1
,
b
n
+
1
]
⊂
[
a
n
,
b
n
]
,
n
=
1
,
2
,
3
,
.
.
.
[a_{n+1},b_{n+1}]\subset[a_{n},b_{n}],n=1,2,3,...
[an+1,bn+1]⊂[an,bn],n=1,2,3,...
(2)
b
n
−
a
n
→
0
(
n
→
∞
)
b_{n}-a_{n}\to 0(n\to\infty)
bn−an→0(n→∞)(区间长度趋于0)
则称这样一列闭区间
{
[
a
n
,
b
n
}
\{[a_{n},b_{n}\}
{[an,bn}是一个闭区间套。
【定理2.4.2】【闭区间套定理】若
{
[
a
n
,
b
n
}
\{[a_{n},b_{n}\}
{[an,bn}是一个闭区间套,则存在唯一的实数
ξ
\xi
ξ属于一切闭区间
[
a
n
,
b
n
]
[a_{n},b_{n}]
[an,bn],且
ξ
=
lim
n
→
∞
a
n
=
lim
n
→
∞
b
n
\xi=\lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n}
ξ=n→∞liman=n→∞limbn
【证】
a
1
≤
a
n
−
1
≤
a
n
<
b
n
≤
b
n
−
1
≤
b
1
a_{1}\le a_{n-1}\le a_{n}<b_{n}\le b_{n-1}\le b_{1}
a1≤an−1≤an<bn≤bn−1≤b1(区间是一个套一个的)
所以
{
a
n
}
\{a_{n}\}
{an}单调增加,且有上界
b
1
b_{1}
b1,
{
b
n
}
\{b_{n}\}
{bn}单调减少,且有下界
a
1
a_{1}
a1,由单调有界定理,
{
a
n
}
\{a_{n}\}
{an}与
{
b
n
}
\{b_{n}\}
{bn}均收敛
设
lim
n
→
∞
a
n
=
ξ
,
lim
n
→
∞
b
n
=
lim
n
→
∞
[
a
n
+
(
b
n
−
a
n
)
]
\lim\limits_{n\to\infty}a_{n}=\xi,\lim\limits_{n\to\infty}b_{n}=\lim\limits_{n\to\infty}[a_{n}+(b_{n}-a_{n})]
n→∞liman=ξ,n→∞limbn=n→∞lim[an+(bn−an)]
根据闭区间套的定义
lim
n
→
∞
(
b
n
−
a
n
)
=
0
\lim\limits_{n\to\infty}(b_{n}-a_{n})=0
n→∞lim(bn−an)=0
所以
lim
n
→
∞
b
n
=
lim
n
→
∞
[
a
n
+
(
b
n
−
a
n
)
]
=
lim
n
→
∞
a
n
=
ξ
\lim\limits_{n\to\infty}b_{n}=\lim\limits_{n\to\infty}[a_{n}+(b_{n}-a_{n})]=\lim\limits_{n\to\infty}a_{n}=\xi
n→∞limbn=n→∞lim[an+(bn−an)]=n→∞liman=ξ
所以
ξ
\xi
ξ是
{
x
n
}
\{x_{n}\}
{xn}的上确界,是
{
b
n
}
\{b_{n}\}
{bn}的下确界
a
n
≤
ξ
≤
b
n
a_{n}\le \xi \le b_{n}
an≤ξ≤bn,即
ξ
\xi
ξ属于一切闭区间
[
a
n
,
b
n
]
[a_{n},b_{n}]
[an,bn]
若
ξ
′
∈
[
a
n
,
b
n
]
,
n
=
1
,
2
,
3
,
.
.
.
\xi '\in[a_{n},b_{n}],n=1,2,3,...
ξ′∈[an,bn],n=1,2,3,...
由
a
n
≤
ξ
′
≤
b
n
a_{n}\le \xi ' \le b_{n}
an≤ξ′≤bn
由于
lim
n
→
∞
a
n
=
lim
n
→
∞
b
n
=
ξ
\lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n}=\xi
n→∞liman=n→∞limbn=ξ
由数列极限的夹逼性定理可知
ξ
′
=
ξ
\xi ' =\xi
ξ′=ξ,所以
ξ
\xi
ξ唯一
证毕
【定理2.4.3】实数集
R
\mathbb{R}
R不可列。
【证】用反证法,假设实数集
R
\mathbb{R}
R可列,即可以找到一种排列的规则使得
R
=
{
x
1
,
x
2
,
x
3
,
.
.
.
,
x
n
,
.
.
.
}
\mathbb{R}=\{x_{1},x_{2},x_{3},...,x_{n},...\}
R={x1,x2,x3,...,xn,...}
取
[
a
1
,
b
1
]
[a_{1},b_{1}]
[a1,b1]使得
x
1
∉
[
a
1
,
b
1
]
x_{1}\notin[a_{1},b_{1}]
x1∈/[a1,b1],将
[
a
1
,
b
1
]
[a_{1},b_{1}]
[a1,b1]分成
[
a
1
,
2
a
1
+
b
1
3
]
,
[
2
a
1
+
b
1
3
,
a
1
+
2
b
1
3
]
,
[
a
1
+
2
b
1
3
,
b
1
]
[a_{1},\frac{2a_{1}+b_{1}}{3}],[\frac{2a_{1}+b_{1}}{3},\frac{a_{1}+2b_{1}}{3}],[\frac{a_{1}+2b_{1}}{3},b_{1}]
[a1,32a1+b1],[32a1+b1,3a1+2b1],[3a1+2b1,b1],其中必有一个区间都包含
x
2
x_{2}
x2,取它为
[
a
2
,
b
2
]
[a_{2},b_{2}]
[a2,b2],
x
2
∉
[
a
2
,
b
2
]
x_{2}\notin[a_{2},b_{2}]
x2∈/[a2,b2],将
[
a
2
,
b
2
]
[a_{2},b_{2}]
[a2,b2]分成三分
[
a
2
,
2
a
2
+
b
2
3
]
,
[
2
a
2
+
b
2
3
,
a
2
+
2
b
2
3
]
,
[
a
2
+
2
b
2
3
,
b
2
]
[a_{2},\frac{2a_{2}+b_{2}}{3}],[\frac{2a_{2}+b_{2}}{3},\frac{a_{2}+2b_{2}}{3}],[\frac{a_{2}+2b_{2}}{3},b_{2}]
[a2,32a2+b2],[32a2+b2,3a2+2b2],[3a2+2b2,b2],其中必有一个区间不包含
x
3
x_{3}
x3,取它为
[
a
3
,
b
3
]
[a_{3},b_{3}]
[a3,b3],
x
3
∉
[
a
3
,
b
3
]
x_{3}\notin[a_{3},b_{3}]
x3∈/[a3,b3]
将此过程一直做下去,得到一个闭区间套
{
[
a
n
,
b
n
]
}
\{[a_{n},b_{n}]\}
{[an,bn]},满足
x
n
∉
[
a
n
,
b
n
]
x_{n}\notin[a_{n},b_{n}]
xn∈/[an,bn],由闭区间套定理,必存在
ξ
\xi
ξ属于一切
[
a
n
,
b
n
]
[a_{n},b_{n}]
[an,bn],于是
∀
n
,
ξ
≠
x
n
,
n
=
1
,
2
,
3
,
.
.
.
\forall n,\xi\ne x_{n},n=1,2,3,...
∀n,ξ=xn,n=1,2,3,...
这与假设矛盾
所以实数集
R
\mathbb{R}
R不可列。
【注】分成三分是为了用闭区间,如果分成两份,那么闭区间会有重合点,如果那个数刚好是重合点,那么就不存在一个不包含
x
n
x_{n}
xn的区间,后面会有问题。