最近在学习书生.浦江大模型实战训练营,所有课程都免费,以关卡的形式学习,也比较有意思,提供免费的算力实战,真的很不错(无广)!欢迎大家一起学习,打开LLM探索大门:邀请连接,
PS,邀请有算力哈哈
。
文章目录
- 一、环境配置
- 二、LMDeploy和InternLM2.5
- 2.1 LMDeploy API部署InternLM2.5
- 2.2 LMDeploy Lite
- 三. LMDeploy之FastAPI与Function call
- 3.1 API开发
- 3.2 Function call
一、环境配置
在internstudio中选择30%A100开发机,cuda选择12.2,进入开发机后新建一个终端,输入以下指令新建一个lmdepoly的环境,安装所需要的依赖包。
conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3
使用软连接获取所需要的模型:
mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models
验证模型文件是否成功:
conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat
二、LMDeploy和InternLM2.5
2.1 LMDeploy API部署InternLM2.5
通过lmdeploy使用gradio部署InternLM2.5模型,新建一个终端输入:
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
再新建一个终端输入:
lmdeploy serve gradio http://localhost:23333 \
--server-name 0.0.0.0 \
--server-port 6006
在本地powershell做一下ssh的映射:
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>
打开浏览器,访问http://127.0.0.1:6006
看到如下界面即代表部署成功,可以正常对话。
可以看到此时的GPU占有率,达到94%,下面利用LmDeploy进行量化部署。
2.2 LMDeploy Lite
–cache-max-entry-count 0.4
LMDeploy 提供了权重量化和 k/v cache两种策略减少大模型部署的成本。使用下面代码进行部署,再观察GPU的使用率,相比之前只是添加了--cache-max-entry-count 0.4
。
lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4
GPU占有率下降到78.27%,这是因为LMDeploy的kv cache管理器可以通过设置–cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。
设置在线 kv cache int4/int8 量化
LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。只需要设定 quant_policy 和cache-max-entry-count参数。
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
可以看到现在的显存占用也是19GB,和上面的一样,那么设置最大kv cache缓存大小中19GB的显存占用区别何在呢?
由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。
相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。
W4A16 模型量化和部署
W4:这通常表示权重量化为4位整数(int4)。A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。
使用1.8B模型进行量化
lmdeploy lite auto_awq \
/root/models/internlm2_5-1_8b-chat \
--calib-dataset 'ptb' \
--calib-samples 128 \
--calib-seqlen 2048 \
--w-bits 4 \
--w-group-size 128 \
--batch-size 1 \
--search-scale False \
--work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit \
等待量化完成后(大概需要一个小时,中间需要输入一个y),在设置的目标文件夹可以看到对应的模型文件,可以通过du命令看到前后的模型大小对比:
cd /root/models/
du -sh *
cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *
从15G到1.5G,模型占用空间变少了不少,然后使用lmdeploy进行部署测试,
lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq
可以看到占用内存是20G,相比于之前的23G有减少。
W4A16 量化+ KV cache+KV cache 量化
将上面的量化手段全部用在一起,
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
查看显存占比,占用11GB,相比于之前有了12GB的减少,还是很有效果的!
三. LMDeploy之FastAPI与Function call
3.1 API开发
首先进入conda环境,进行api的启动:
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat-w4a16-4bit \
--model-format awq \
--cache-max-entry-count 0.4 \
--quant-policy 4 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
新建一个终端,创建internlm2.5.py文件
touch /root/internlm2_5.py
将下面的内容粘贴到internlm2.5.py文件中:
# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI
# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
api_key='YOUR_API_KEY',
# 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
base_url="http://0.0.0.0:23333/v1"
# 指定API的基础URL,这里使用了本地地址和端口
)
# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id
# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
model=model_name,
# 指定要使用的模型ID
messages=[
# 定义消息列表,列表中的每个字典代表一个消息
{"role": "system", "content": "你是一个友好的小助手,负责解决问题."},
# 系统消息,定义助手的行为
{"role": "user", "content": "给我讲一个笑话"},
# 用户消息,询问时间管理的建议
],
temperature=0.8,
# 控制生成文本的随机性,值越高生成的文本越随机
top_p=0.8
# 控制生成文本的多样性,值越高生成的文本越多样
)
# 打印出API的响应结果
print(response.choices[0].message.content)
新建终端输入以下指令激活环境并运行python代码:
conda activate lmdeploy
python /root/internlm2_5.py
3.2 Function call
函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。进入创建好的conda环境并启动API服务器。
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
新建internlm2_5_func.py:
touch /root/internlm2_5_func.py
将以下内容复制粘贴进internlm2_5_func.py
:
from openai import OpenAI
def add(a: int, b: int):
return a + b
def mul(a: int, b: int):
return a * b
tools = [{
'type': 'function',
'function': {
'name': 'add',
'description': 'Compute the sum of two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'int',
'description': 'A number',
},
'b': {
'type': 'int',
'description': 'A number',
},
},
'required': ['a', 'b'],
},
}
}, {
'type': 'function',
'function': {
'name': 'mul',
'description': 'Calculate the product of two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'int',
'description': 'A number',
},
'b': {
'type': 'int',
'description': 'A number',
},
},
'required': ['a', 'b'],
},
}
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)
messages.append({
'role': 'assistant',
'content': response.choices[0].message.content
})
messages.append({
'role': 'environment',
'content': f'3+5={func1_out}',
'name': 'plugin'
})
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)
运行代码观察输出:
python /root/internlm2_5_func.py
至此LMDeploy 量化部署进阶实践完成!