Python优化算法14——海鸥优化算法(SOA)

news2024/9/24 13:16:16

科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。

需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客


算法介绍

基本概念

SOA的设计灵感来源于海鸥的三种典型行为:迁徙、围绕猎物飞行和俯冲捕捉。通过模拟这些行为,SOA能够在搜索空间中进行有效的全局探索和局部开发。

算法流程

  1. 初始化:

  • 在搜索空间内随机生成一组初始解,这些解被称为海鸥个体。

  1. 适应度评估:

  • 计算每个海鸥个体的适应度值,通常由优化问题的目标函数决定。

  1. 海鸥迁徙:

  • 模拟海鸥群体的迁徙行为,通过调整个体的位置实现全局搜索。

  • 迁徙行为帮助海鸥在广阔的搜索空间中发现新的潜在解。

  1. 围绕猎物飞行:

  • 模拟海鸥围绕猎物飞行的轨迹,增强局部开发能力。

  • 这一过程帮助海鸥个体进一步探索当前解的邻域。

  1. 俯冲捕捉:

  • 模拟海鸥快速俯冲以捕捉猎物的行为,通过快速的局部搜索进一步优化解。

  1. 更新最优解:

  • 根据适应度信息更新全局和局部最优解,以指导接下来的飞行和搜索过程。

  1. 迭代:

  • 重复迁徙、围绕飞行、俯冲捕捉以及解更新,直到达到停止条件,如最大迭代次数或找到满意的解。

优势与应用

海鸥优化算法具有以下特点:

  • 动态平衡:通过模拟海鸥的多种行为,SOA在全局搜索和局部开发之间实现了一个动态平衡。

  • 灵活性:算法结构相对简单,适用于各种类型的优化问题。

由于这些特点,SOA在工程设计优化、机器学习参数优化等领域得到了应用。与其他自然启发式算法一样,SOA的性能可能依赖于参数设置以及问题的具体特征,因此在具体应用中需要进行适当的调整和优化。

原理不多介绍了,直接看代码就好。


代码实现

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
import warnings
import copy

plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'

只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:

'''F1函数'''
def F1(X):
    Results=np.sum(X**2)
    return Results
 
'''F2函数'''
def F2(X):
    Results=np.sum(np.abs(X))+np.prod(np.abs(X))
    return Results
 
'''F3函数'''
def F3(X):
    dim=X.shape[0]
    Results=0
    for i in range(dim):
        Results=Results+np.sum(X[0:i+1])**2
    return Results
 
'''F4函数'''
def F4(X):
    Results=np.max(np.abs(X))
    return Results
 
'''F5函数'''
def F5(X):
    dim=X.shape[0]
    Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)
    return Results
 
'''F6函数'''
def F6(X):
    Results=np.sum(np.abs(X+0.5)**2)
    return Results
 
'''F7函数'''
def F7(X):
    dim = X.shape[0]
    Temp = np.arange(1,dim+1,1)
    Results=np.sum(Temp*(X**4))+np.random.random()
    return Results
 
'''F8函数'''
def F8(X):
    Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))
    return Results
 
'''F9函数'''
def F9(X):
    dim=X.shape[0]
    Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim
    return Results
 
'''F10函数'''
def F10(X):
    dim=X.shape[0]
    Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)
    return Results
 
'''F11函数'''
def F11(X):
    dim=X.shape[0]
    Temp=np.arange(1,dim+1,+1)
    Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1
    return Results
 
'''F12函数'''
def Ufun(x,a,k,m):
    Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
    return Results
 
def F12(X):
    dim=X.shape[0]
    Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\
             np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\
    np.sum(Ufun(X,10,100,4))
    return Results
 
'''F13函数'''
def Ufun(x,a,k,m):
    Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
    return Results
 
def F13(X):
    dim=X.shape[0]
    Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\
                 ((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))
    return Results
 
'''F14函数'''
def F14(X):
    aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\
                 [-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])
    bS=np.zeros(25)
    for i in range(25):
        bS[i]=np.sum((X-aS[:,i])**6)
    Temp=np.arange(1,26,1)
    Results=(1/500+np.sum(1/(Temp+bS)))**(-1)
    return Results
 
'''F15函数'''
def F15(X):
    aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])
    bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])
    bK=1/bK
    Results=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)
    return Results
 
'''F16函数'''
def F16(X):
    Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)
    return Results
 
'''F17函数'''
def F17(X):
    Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10
    return Results
 
'''F18函数'''
def F18(X):
    Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\
    (30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))
    return Results
 
'''F19函数'''
def F19(X):
    aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])
    cH=np.array([1,1.2,3,3.2])
    pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])
    Results=0
    for i in range(4):
        Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
    return Results
 
'''F20函数'''
def F20(X):
    aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])
    cH=np.array([1,1.2,3,3.2])
    pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\
                 [0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])
    Results=0
    for i in range(4):
        Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
    return Results
 
'''F21函数'''
def F21(X):
    aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
                  [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
    cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
    Results=0
    for i in range(5):
        Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
    return Results
 
'''F22函数'''
def F22(X):
    aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
                  [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
    cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
    Results=0
    for i in range(7):
        Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
    return Results
 
'''F23函数'''
def F23(X):
    aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
                  [2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
    cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
    Results=0
    for i in range(10):
        Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
    return Results

把他们的参数设置都用字典装起来

Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10,
             'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,
             'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()
 
#维度,搜索区间下界,搜索区间上界,最优值
Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],
 'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],
 'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],
 'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}

Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。


海鸥优化算法

终于到了算法的主代码阶段了:

import numpy as np
import copy

def initialization(pop,ub,lb,dim):
    ''' 种群初始化函数'''
    '''
    pop:为种群数量
    dim:每个个体的维度
    ub:每个维度的变量上边界,维度为[dim,1]
    lb:为每个维度的变量下边界,维度为[dim,1]
    X:为输出的种群,维度[pop,dim]
    '''
    X = np.zeros([pop,dim]) #声明空间
    for i in range(pop):
        for j in range(dim):
            X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数
    
    return X
     
def BorderCheck(X,ub,lb,pop,dim):
    '''边界检查函数'''
    '''
    dim:为每个个体数据的维度大小
    X:为输入数据,维度为[pop,dim]
    ub:为个体数据上边界,维度为[dim,1]
    lb:为个体数据下边界,维度为[dim,1]
    pop:为种群数量
    '''
    for i in range(pop):
        for j in range(dim):
            if X[i,j]>ub[j]:
                X[i,j] = ub[j]
            elif X[i,j]<lb[j]:
                X[i,j] = lb[j]
    return X


def CaculateFitness(X,fun):
    '''计算种群的所有个体的适应度值'''
    pop = X.shape[0]
    fitness = np.zeros([pop, 1])
    for i in range(pop):
        fitness[i] = fun(X[i, :])
    return fitness


def SortFitness(Fit):
    '''适应度值排序'''
    '''
    输入为适应度值
    输出为排序后的适应度值,和索引
    '''
    fitness = np.sort(Fit, axis=0)
    index = np.argsort(Fit, axis=0)
    return fitness,index

def SortPosition(X,index):
    '''根据适应度值对位置进行排序'''
    Xnew = np.zeros(X.shape)
    for i in range(X.shape[0]):
        Xnew[i,:] = X[index[i],:]
    return Xnew


def SOA(pop, dim, lb, ub, MaxIter, fun):
    '''海鸥优化算法'''
    '''
    输入:
    pop:为种群数量
    dim:每个个体的维度
    ub:为个体上边界信息,维度为[1,dim]
    lb:为个体下边界信息,维度为[1,dim]
    fun:为适应度函数接口
    MaxIter:为最大迭代次数
    输出:
    GbestScore:最优解对应的适应度值
    GbestPositon:最优解
    Curve:迭代曲线
    '''
    fc = 2 #可调
    X = initialization(pop,ub,lb,dim) #初始化种群
    fitness = CaculateFitness(X,fun) #计算适应度值
    fitness,sortIndex = SortFitness(fitness) #对适应度值排序
    X = SortPosition(X,sortIndex) #种群排序
    GbestScore = copy.copy(fitness[0])
    GbestPositon = np.zeros([1,dim])
    GbestPositon[0,:] = copy.copy(X[0,:])
    Curve = np.zeros([MaxIter,1])
    MS = np.zeros([pop,dim])
    CS = np.zeros([pop,dim])
    DS = np.zeros([pop,dim])
    X_new = copy.copy(X)
    for i in range(MaxIter):
        print("第"+str(i)+"次迭代")
        Pbest = X[0,:]
        for j in range(pop):
            #计算Cs
            A = fc - (i*(fc/MaxIter))
            CS[j,:]=X[j,:]*A
            #计算Ms
            rd=np.random.random()
            B = 2*(A**2)*rd
            MS[j,:] = B*(Pbest - X[j,:])
            #计算Ds
            DS[j,:] = np.abs(CS[j,:] + MS[j,:])           
            #局部搜索
            u = 1
            v = 1
            theta = np.random.random()
            r = u*np.exp(theta*v)
            x = r*np.cos(theta*2*np.pi)
            y = r*np.sin(theta*2*np.pi)
            z = r*theta
            #攻击
            X_new[j,:] = x*y*z*DS[j,:] + Pbest
        
        X = BorderCheck(X_new,ub,lb,pop,dim) #边界检测       
        fitness = CaculateFitness(X,fun) #计算适应度值
        fitness,sortIndex = SortFitness(fitness) #对适应度值排序
        X = SortPosition(X,sortIndex) #种群排序
        if(fitness[0]<=GbestScore): #更新全局最优
            GbestScore = copy.copy(fitness[0])
            GbestPositon[0,:] = copy.copy(X[0,:])
        Curve[i] = GbestScore
     
    return GbestScore, GbestPositon, Curve

其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。

OPT_algorithms = {'SOA':SOA}
OPT_algorithms.keys()


简单使用

我们选择F6来测试,先看看F6函数三维的情况:

'''F6绘图函数'''
from mpl_toolkits.mplot3d import Axes3D

def F6Plot():
    fig = plt.figure(1) #定义figure
    ax = Axes3D(fig) #将figure变为3d
    x1=np.arange(-100,100,2) #定义x1,范围为[-100,100],间隔为2
    x2=np.arange(-100,100,2) #定义x2,范围为[-100,100],间隔为2
    X1,X2=np.meshgrid(x1,x2) #生成网格
    nSize = x1.shape[0]
    Z=np.zeros([nSize,nSize])
    for i in range(nSize):
        for j in range(nSize):
            X=[X1[i,j],X2[i,j]] #构造F6输入
            X=np.array(X) #将格式由list转换为array
            Z[i,j]=F6(X)  #计算F6的值
    #绘制3D曲面
    # rstride:行之间的跨度  cstride:列之间的跨度
    # rstride:行之间的跨度  cstride:列之间的跨度
    # cmap参数可以控制三维曲面的颜色组合
    ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
    ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线
    ax.set_xlabel('X1')#x轴说明
    ax.set_ylabel('X2')#y轴说明
    ax.set_zlabel('Z')#z轴说明
    ax.set_title('F6_space')
    plt.show()

F6Plot()

然后我们使用优化算法来寻优,自定义好所有的参数:

#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F6
#原始算法
GbestScore,GbestPositon,Curve = SOA(pop,dim,lb,ub,MaxIter,fobj) 
#改进算法

print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)

其实f6测试函数的最小值是零。所以可以看到这些结果差不多为零,,算接近吧,勉强符合最优的情况的。所以这个算法效果一般般。。。

自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。

这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。

绘制适应度曲线

#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('SOA',fontsize='large')
plt.legend(['SOA'], loc='upper right')
plt.show()

 

可以看到这个参数大概在50人左右就收敛到将近于零的位置,虽然他最后没有寻到最优的零,只到0.6附近,效果一般般吧。

其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。


所有函数都测试一下

准备存储评价结果的数据框

functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()

索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。

准备存储迭代图的数据框

df_Curve=pd.DataFrame(columns=index)
df_Curve

自定义训练函数

#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):
    fundim=Fundim[fobj_name]  ; fobj=Funobject[fobj_name]
    dim=fundim[0]
    lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])
    
    opt_algo=OPT_algorithms[opt_algo_name]
    
    GbestScore_one=np.zeros([Iter])
    GbestPositon_one=np.zeros([Iter,dim])
    Curve_one=np.zeros([Iter,MaxIter])
    
    for i in range(Iter):
        GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)
        Curve_one[i,:]=Curve_oneT.T
    
    oneal_Mean=np.mean(GbestScore_one) #计算平均适应度值
    oneal_Std=np.std(GbestScore_one)#计算标准差
    oneal_Best=np.min(GbestScore_one)#计算最优值
    oneal_Worst=np.max(GbestScore_one)#计算最差值
    
    oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线

    #储存结果
    df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]
    df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve
    #df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurve
    if show_fit:
        print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')

训练测试

#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数

计算,遍历所有的测试函数

#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):
    for opt_algo_name in OPT_algorithms.keys():
        try:
            train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)
            print(f'{fobj_name}的{opt_algo_name}算法完成')
        except Exception as e: # 使用 except 来捕获错误
            print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息

查看计算出来的评价指标

df_eval

由于这里大部分的测试函数最优值都是零,我们可以看到。SOA在很多函数上基本是可以找到最优值的,这个算法性能还不。

画出迭代图

colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']

def plot_log_line(df_plot, fobj_name, step=10, save=False):
    plt.figure(figsize=(6, 3), dpi=128)
    for column, color, marker in zip(df_plot.columns, colors, markers):
        plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(), 
                     color=color, marker=marker, label=column, markersize=4, alpha=0.7)

    plt.xlabel('Iterations')
    plt.ylabel('f')
    plt.legend(loc='best', fontsize=8)
    if save:
        plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')
    plt.show()

# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():
    df1=df_Curve[fobj_name]
    print(f'{fobj_name}的不同算法效果对比:')
    plot_log_line(df1,fobj_name,5,False)   #保存图片-True

注意这里是y轴是对数轴,看起来没那么陡峭。这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。。。当然观察后这个算法效果还不错,100轮基本都收敛到最优值了,虽然可能不如我前面的SMA, SSA,CS等其他的优化算法。


后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的

当然需要本次案例的全部代码文件的还是可以参考:海鸥优化算法

创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2074116.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【图文并茂】ant design pro 如何给后端发送 json web token - 请求拦截器的使用

上一节有讲过 【图文并茂】ant design pro 如何对接后端个人信息接口 还差一个东西&#xff0c;去获取个人信息的时候&#xff0c;是要发送 token 的&#xff0c;不然会报 403. 就是说在你登录之后才去获得个人信息。这样后端才能知道是谁的信息。 token 就代码了某个人。 …

工作实战-项目压测记录

1-1-1每分钟的单量 1-1-2第二版测试 2022年5月16日 17:43:11 成功 失败 其它(nginx) 真实入库单量 总单量 52 1 447 500 2022年5月16日 19:42:18 成功 失败 其它(nginx) 真实入库单量 总单量 311 689 306 1000 2-0-1. 20线程-2000单执行结果 2-1-0. 40线…

金融科技 API 接口:提升金融服务效率的关键

金融科技是应用技术手段和创新理念来提升金融服务效率的重要途径。而其中的API接口则是实现金融科技的关键。API接口的简单定义是提供计算机程序之间通信的规范和工具&#xff0c;提供一种方法和数据的交互形式&#xff0c;以便开发人员能够利用现有的软件来创建新的应用和服务…

前端网格布局display: grid;

display: grid; 块级网格 &#xff08;常用&#xff09; display: inline-grid; 行内块级网格 &#xff08;一般不用&#xff09; HTML 元素将 display 属性设置为 grid 或 inline-grid 后&#xff0c;它就变成了一个网格容器&#xff0c;这个元素的所有直系子元素将…

Mobile-Agent项目部署与学习总结(DataWhale AI夏令营)

前言 你好&#xff0c;我是GISer Liu&#xff0c;一名热爱AI技术的GIS开发者&#xff0c;本文是DataWhale 2024 AI夏令营的最后一期——Mobile-Agent赛道&#xff0c;这是作者的学习文档&#xff0c;这里总结一下&#xff0c;和作者一起学习这个多模态大模型新项目吧&#x1f6…

开放式耳机对耳朵的伤害会减小吗?亲测好用的四款蓝牙耳机

开放式耳机对耳朵的伤害相对较小。 首先&#xff0c;开放式耳机不入耳&#xff0c;不会直接堵塞耳道&#xff0c;减少了对耳道的挤压和摩擦&#xff0c;降低了因长期佩戴入耳式耳机可能导致的耳道发炎、疼痛等问题。 其次&#xff0c;由于耳朵没有被完全封闭&#xff0c;耳部能…

【C/C++】结构体指针赋值的方法

在C语言中&#xff0c;结构体指针赋值有两种方法&#xff1a; 1.使用"->"操作符&#xff1a;通过结构体指针访问结构体成员并赋值。例如&#xff1a; struct Student {int id;char name[20]; };int main() {struct Student s1;struct Student *ptr_s1 &s1;…

设计模式学习[4]---依赖倒置原则+里氏代换原则

文章目录 前言1. 依赖倒置原则1.1 原理阐述1.2 举例 2.里氏代换原则2.1 原理阐述2.2 举例说明 总结 前言 在给发新功能模块之前&#xff0c;都先要画UML类图进行需求分析。对每一个类的作用&#xff0c;类与类之间的关系做一个详细的阐述。确定好基本的框架之后&#xff0c;才…

Lumos学习王佩丰Excel第十四讲:日期函数

一、认识时间和日期 1、回顾日期格式 日期可以由数字表示。 2、时间格式 时间由小数表示。 3、基本的时间与日期运算 二、日期函数 1、Year、Month、Day函数 2、Date函数 DATE(year,month,day&#xff09;&#xff1a;year为必需参数&#xff0c;可以包含1到4个数字。Day函…

LeetCode 热题 100 回顾

目录 一、哈希部分 1.两数之和 &#xff08;简单&#xff09; 2.字母异位词分组 &#xff08;中等&#xff09; 3.最长连续序列 &#xff08;中等&#xff09; 二、双指针部分 4.移动零 &#xff08;简单&#xff09; 5.盛最多水的容器 &#xff08;中等&#xff09; 6…

文心一言 VS 讯飞星火 VS chatgpt (332)-- 算法导论23.1 1题

一、设(u,v)是连通图G中的一条权重最小的边&#xff0c;证明&#xff1a;边(u,v)为图G的某棵最小生成树中的一条边。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 为了证明边(u,v)是图G的某棵最小生成树中的一条边&#xff0c;我们可以使用反证法结合最小生成…

09 复合查询

前面的查询都是对一张表进行查询&#xff0c;但这远远不够 基本查询回顾 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为大写的J select * from EMP where (sal>500 or job‘MANAGER’) and ename like ‘J%’; 按照部门号升序而雇员的…

免费用的写作神器:一键自动生成文章,提升内容创作效率!

传统的写作过程往往耗时耗力&#xff0c;从构思、调研到撰写、修改&#xff0c;每一步都需要创作者亲力亲为。免费写作神器的出现&#xff0c;犹如一场及时雨&#xff0c;为创作者提供了强大的支持。它利用先进的算法和自然语言处理技术&#xff0c;能够在短时间内生成高质量的…

了解Redis数据持久化(中)

3.5写时复制 Redis在使用RDB方式进行持久化时&#xff0c;会用到写时复制机制。写时复制的效果: bgsave子进程相当于复制了原始数据&#xff0c;而主线程仍然可以修改原来的数据。 对Redis来说&#xff0c;主线程fork出bgsave子进程后&#xff0c;bgsave子进程实际是复制了主线…

初识C语言指针(5)

目录 1. 回调函数 2. qsort函数 2.1 qsort函数的基本参数 2.2 qsort函数的使用 2.3 qsort排序结构体类型数据 结语 1. 回调函数 什么是回调函数呢&#xff1f;回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递给另…

超分CAMixerSR 使用笔记

目录 超分CAMixerSR 笔记 自己改进的图例示例: 修改目录: 设置预训练模型: 超分CAMixerSR 笔记 自己改进的图例示例: 修改目录: codes/basicsr改为codes/basicsr_m 设置预训练模型: path:pretrain_network_g: F:\project\chaofen\CAMixerSR-main\pretrained_mode…

解决html中文乱码问题

在head上面添加 <% page contentType"text/html;charsetUTF-8" language"java" %>

【Three.js基础学习】19.Custom models with Blender

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 前言 blender模型资源:【blender】一个汉堡包-CSDN博客 一、代码 import ./style.css import * as THREE from three import { OrbitControls } from three/examples/jsm/co…

集成mybatis-plus框架

文章目录 1.新建一个sun_frame数据库并创建user表2.新建一个sun-common-mybatisplus模块1.maven项目2.添加依赖 3.sun-user集成mybatis-plus1.配置application.yml2.修改架构&#xff0c;由sun-user模块引入需要的公共模块3.代码目录结构4.mapper&#xff1a;po查&#xff0c;p…

SQLSugar进阶使用:高级查询与性能优化

文章目录 前言一、高级查询1.查所有2.查询总数3.按条件查询4.动态OR查询5.查前几条6.设置新表名7.分页查询8.排序 OrderBy9.联表查询10.动态表达式11.原生 Sql 操作 &#xff0c;Sql和存储过程 二、性能优化1.二级缓存2.批量操作3.异步操作4.分表组件&#xff0c;自动分表5.查询…