灵敏度分析Python工具箱
- Sensitivity Analysis Library
- Supported Methods
- Installation
- Requirements
- How to cite SALib
- Reference
Sensitivity Analysis Library
SALib是常用灵敏度分析方法的Python实现,包括 Sobol、Morris 和 FAST 方法。在系统建模中很有用,可以计算模型输入或外生因素对感兴趣的输出的影响。
Supported Methods
SALib支持以下10种方法:
-
Sobol Sensitivity Analysis
-
Method of Morris, including groups and optimal trajectories
-
Fourier Amplitude Sensitivity Test (FAST)
-
Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST)
-
Delta Moment-Independent Measure
-
Derivative-based Global Sensitivity Measure (DGSM)
-
Fractional Factorial Sensitivity Analysis
-
High Dimensional Model Representation
-
PAWN
-
Regional Sensitivity Analysis
Installation
pip install SALib
or
conda install SALib
Requirements
NumPy
SciPy
matplotlib
pandas
Python 3 (from SALib v1.2 onwards SALib does not officially support Python 2)
How to cite SALib
If you would like to use our software, please cite it using the following:
Iwanaga, T., Usher, W., & Herman, J. (2022). Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, 18155. doi:10.18174/sesmo.18155
Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis. Journal of Open Source Software, 2(9). doi:10.21105/joss.00097If you would like to use our software, please cite it using the following:
If you use BibTeX, cite using the following entries:
@article{Iwanaga2022,
title = {Toward {SALib} 2.0: {Advancing} the accessibility and interpretability of global sensitivity analyses},
volume = {4},
url = {https://sesmo.org/article/view/18155},
doi = {10.18174/sesmo.18155},
journal = {Socio-Environmental Systems Modelling},
author = {Iwanaga, Takuya and Usher, William and Herman, Jonathan},
month = may,
year = {2022},
pages = {18155},
}
@article{Herman2017,
doi = {10.21105/joss.00097},
url = {https://doi.org/10.21105/joss.00097},
year = {2017},
month = {jan},
publisher = {The Open Journal},
volume = {2},
number = {9},
author = {Jon Herman and Will Usher},
title = {{SALib}: An open-source Python library for Sensitivity Analysis},
journal = {The Journal of Open Source Software}
}If you use BibTeX, cite using the following entries:
Reference
- Sobol Sensitivity Analysis
Sobol 2001, Saltelli 2002, Saltelli et al. 2010 - Method of Morris, including groups and optimal trajectories
Morris 1991,Campolongo et al. 2007 - Fourier Amplitude Sensitivity Test (FAST)
Cukier et al. 1973, Saltelli et al. 1999 - Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST)
Tarantola et al. 2006 Elmar Plischke 2010, Tissot et al. 2012 - Delta Moment-Independent Measure
Borgonovo 2007, Plischke et al. 2013 - Derivative-based Global Sensitivity Measure (DGSM)
Sobol and Kucherenko 2009 - Fractional Factorial Sensitivity Analysis
Saltelli et al. 2008 - High Dimensional Model Representation
Li et al. 2010 - PAWN
Pianosi and Wagener 2018, Pianosi and Wagener 2015 - Regional Sensitivity Analysis
(based on Hornberger and Spear, 1981, Saltelli et al. 2008, Pianosi et al., 2016