科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。
需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客
算法介绍
螳螂优化算法(Grasshopper Optimization Algorithm, GOA)是一种基于群体智能的优化算法,由Saremi等人在2017年提出。该算法受到螳螂群体在自然界中觅食行为的启发。螳螂在觅食过程中展现出复杂的集体运动和相互作用,这种行为被用于设计优化算法,解决复杂的优化问题。 以下是螳螂优化算法的基本流程:
1. **初始化**: - 随机生成一组螳螂个体作为初始解,它们的位置表示潜在的解。
2. **位置更新**: - 在每次迭代中,螳螂个体根据其与其他个体之间的距离和相互作用进行位置更新。该过程模拟了螳螂在群体中的社交行为和环境适应。
3. **适应度评估**: - 计算每个螳螂个体的适应度值,根据优化问题的目标函数来评估解的质量。
4. **信息共享**: - 各个螳螂个体之间共享信息,全局最优解的信息被用来引导螳螂个体的运动方向,提高算法的探索效率。
5. **迭代更新**: - 重复位置更新和适应度评估过程,直到达到停止条件,例如最大迭代次数或达到预期的解。 螳螂优化算法的优势在于其强大的全局搜索能力和处理多样化问题的适应性。由于其模拟了螳螂的集体运动和觅食行为,GOA能够有效避免局部最优解,探索更广泛的解空间。这使它在功能优化、路径规划和参数调优等领域得到了广泛应用。与其他优化算法类似,GOA的性能可能依赖于参数设置以及具体问题特征,因此需要在实践中进行调整和优化。
原理不多介绍了,直接看代码就好。
代码实现
导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import copy
plt.rcParams ['font.sans-serif'] ='SimHei' #显示中文
plt.rcParams ['axes.unicode_minus']=False #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'
只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:
'''F1函数'''
def F1(X):
Results=np.sum(X**2)
return Results
'''F2函数'''
def F2(X):
Results=np.sum(np.abs(X))+np.prod(np.abs(X))
return Results
'''F3函数'''
def F3(X):
dim=X.shape[0]
Results=0
for i in range(dim):
Results=Results+np.sum(X[0:i+1])**2
return Results
'''F4函数'''
def F4(X):
Results=np.max(np.abs(X))
return Results
'''F5函数'''
def F5(X):
dim=X.shape[0]
Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)
return Results
'''F6函数'''
def F6(X):
Results=np.sum(np.abs(X+0.5)**2)
return Results
'''F7函数'''
def F7(X):
dim = X.shape[0]
Temp = np.arange(1,dim+1,1)
Results=np.sum(Temp*(X**4))+np.random.random()
return Results
'''F8函数'''
def F8(X):
Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))
return Results
'''F9函数'''
def F9(X):
dim=X.shape[0]
Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim
return Results
'''F10函数'''
def F10(X):
dim=X.shape[0]
Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)
return Results
'''F11函数'''
def F11(X):
dim=X.shape[0]
Temp=np.arange(1,dim+1,+1)
Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1
return Results
'''F12函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F12(X):
dim=X.shape[0]
Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\
np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\
np.sum(Ufun(X,10,100,4))
return Results
'''F13函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F13(X):
dim=X.shape[0]
Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\
((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))
return Results
'''F14函数'''
def F14(X):
aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\
[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])
bS=np.zeros(25)
for i in range(25):
bS[i]=np.sum((X-aS[:,i])**6)
Temp=np.arange(1,26,1)
Results=(1/500+np.sum(1/(Temp+bS)))**(-1)
return Results
'''F15函数'''
def F15(X):
aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])
bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])
bK=1/bK
Results=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)
return Results
'''F16函数'''
def F16(X):
Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)
return Results
'''F17函数'''
def F17(X):
Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10
return Results
'''F18函数'''
def F18(X):
Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\
(30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))
return Results
'''F19函数'''
def F19(X):
aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F20函数'''
def F20(X):
aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\
[0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F21函数'''
def F21(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(5):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F22函数'''
def F22(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(7):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F23函数'''
def F23(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(10):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
把他们的参数设置都用字典装起来
Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10,
'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,
'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()
#维度,搜索区间下界,搜索区间上界,最优值
Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],
'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],
'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],
'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}
Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。
螳螂群优化算法
终于到了算法的主代码阶段了:
import numpy as np
import copy as copy
def initialization(pop,ub,lb,dim):
''' 种群初始化函数'''
'''
pop:为种群数量
dim:每个个体的维度
ub:每个维度的变量上边界,维度为[dim,1]
lb:为每个维度的变量下边界,维度为[dim,1]
X:为输出的种群,维度[pop,dim]
'''
X = np.zeros([pop,dim]) #声明空间
for i in range(pop):
for j in range(dim):
X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数
return X
def BorderCheck(X,ub,lb,pop,dim):
'''边界检查函数'''
'''
dim:为每个个体数据的维度大小
X:为输入数据,维度为[pop,dim]
ub:为个体数据上边界,维度为[dim,1]
lb:为个体数据下边界,维度为[dim,1]
pop:为种群数量
'''
for i in range(pop):
for j in range(dim):
if X[i,j]>ub[j]:
X[i,j] = ub[j]
elif X[i,j]<lb[j]:
X[i,j] = lb[j]
return X
def CaculateFitness(X,fun):
'''计算种群的所有个体的适应度值'''
pop = X.shape[0]
fitness = np.zeros([pop, 1])
for i in range(pop):
fitness[i] = fun(X[i, :])
return fitness
def SortFitness(Fit):
'''适应度值排序'''
'''
输入为适应度值
输出为排序后的适应度值,和索引
'''
fitness = np.sort(Fit, axis=0)
index = np.argsort(Fit, axis=0)
return fitness,index
def SortPosition(X,index):
'''根据适应度值对位置进行排序'''
Xnew = np.zeros(X.shape)
for i in range(X.shape[0]):
Xnew[i,:] = X[index[i],:]
return Xnew
def distance(a,b):
'''计算距离'''
d = np.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2)
return d
def S_func(r):
'''社会作用力函数s'''
f=0.5
l=1.5
o=f*np.exp(-r/l)-np.exp(-r)
return o
def GOA(pop, dim, lb, ub, MaxIter, fun):
'''蝗虫优化算法'''
'''
输入:
pop:为种群数量
dim:每个个体的维度
ub:为个体上边界信息,维度为[1,dim]
lb:为个体下边界信息,维度为[1,dim]
fun:为适应度函数接口
MaxIter:为最大迭代次数
输出:
GbestScore:最优解对应的适应度值
GbestPositon:最优解
Curve:迭代曲线
'''
#定义参数c的范围
cMax = 1
cMin = 0.00004
X = initialization(pop,ub,lb,dim) #初始化种群
fitness = CaculateFitness(X,fun) #计算适应度值
fitness,sortIndex = SortFitness(fitness) #对适应度值排序
X = SortPosition(X,sortIndex) #种群排序
GbestScore = copy.copy(fitness[0])
GbestPositon = copy.copy(X[0,:])
Curve = np.zeros([MaxIter,1])
GrassHopperPositions_temp = np.zeros([pop,dim])#应用于临时存放新位置
for t in range(MaxIter):
c = cMax - t*((cMax - cMin)/MaxIter) #计算参数c
#print("第",t,"次迭代")
for i in range(pop):
Temp = X.T
S_i_total = np.zeros([dim,1])
for k in range(0,dim-1,2):
S_i = np.zeros([2,1])
for j in range(pop):
if i != j:
Dist = distance(Temp[k:k+2,j],Temp[k:k+2,i])#计算两只蝗虫的距离d
r_ij_vec=(Temp[k:k+2,j]-Temp[k:k+2,i])/(Dist + 2**-52)#计算距离单位向量,2**-52是一个极小数,防止分母为0
xj_xi = 2 + Dist%2 #计算|xjd - xid|
s_ij1 = ((ub[k] - lb[k])*c/2)*S_func(xj_xi)*r_ij_vec[0]
s_ij2 = ((ub[k+1] - lb[k+1])*c/2)*S_func(xj_xi)*r_ij_vec[1]
S_i[0,:] = S_i[0,:] + s_ij1
S_i[1,:] = S_i[1,:] + s_ij2
S_i_total[k:k+2,:]=S_i
Xnew = c*S_i_total.T + GbestPositon #更新位置
GrassHopperPositions_temp[i,:] = copy.copy(Xnew)
X = BorderCheck(GrassHopperPositions_temp,ub,lb,pop,dim) #边界检测
fitness = CaculateFitness(X,fun) #计算适应度值
fitness,sortIndex = SortFitness(fitness) #对适应度值排序
X = SortPosition(X,sortIndex) #种群排序
if(fitness[0]<=GbestScore): #更新全局最优
GbestScore = copy.copy(fitness[0])
GbestPositon = copy.copy(X[0,:])
Curve[t] = GbestScore
return GbestScore,GbestPositon,Curve
其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。
OPT_algorithms = {'GOA':GOA}
OPT_algorithms.keys()
简单使用
我们选择F3来测试,先看看F3函数三维的情况:
'''F3绘图函数'''
from mpl_toolkits.mplot3d import Axes3D
def F3Plot():
fig = plt.figure(1) #定义figure
ax = Axes3D(fig) #将figure变为3d
x1=np.arange(-100,100,2) #定义x1,范围为[-100,100],间隔为2
x2=np.arange(-100,100,2) #定义x2,范围为[-100,100],间隔为2
X1,X2=np.meshgrid(x1,x2) #生成网格
nSize = x1.shape[0]
Z=np.zeros([nSize,nSize])
for i in range(nSize):
for j in range(nSize):
X=[X1[i,j],X2[i,j]] #构造F3输入
X=np.array(X) #将格式由list转换为array
Z[i,j]=F3(X) #计算F3的值
#绘制3D曲面
# rstride:行之间的跨度 cstride:列之间的跨度
# rstride:行之间的跨度 cstride:列之间的跨度
# cmap参数可以控制三维曲面的颜色组合
ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线
ax.set_xlabel('X1')#x轴说明
ax.set_ylabel('X2')#y轴说明
ax.set_zlabel('Z')#z轴说明
ax.set_title('F3_space')
plt.show()
F3Plot()
然后我们使用优化算法来寻优,自定义好所有的参数:
#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F3
#原始算法
GbestScore,GbestPositon,Curve = GOA(pop,dim,lb,ub,MaxIter,fobj)
#改进算法
print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)
其实f3测试函数的最小值是零。所以可以看到这些结果不为零,不符合最优的情况的。所以这个算法真的不咋地。。。
自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。
这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。
绘制适应度曲线
#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('GOA',fontsize='large')
plt.legend(['GOA'], loc='upper right')
plt.show()
注意,我这里是对数轴,所以它看起来会没有很收敛,这个函数的最小值是0,你看他迭代了这么多轮都没办法接近0,所以这个算法效果真不太行。。。
其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。
所有函数都测试一下
准备存储评价结果的数据框
functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()
索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。
准备存储迭代图的数据框
df_Curve=pd.DataFrame(columns=index)
df_Curve
自定义训练函数
#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):
fundim=Fundim[fobj_name] ; fobj=Funobject[fobj_name]
dim=fundim[0]
lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])
opt_algo=OPT_algorithms[opt_algo_name]
GbestScore_one=np.zeros([Iter])
GbestPositon_one=np.zeros([Iter,dim])
Curve_one=np.zeros([Iter,MaxIter])
for i in range(Iter):
GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)
Curve_one[i,:]=Curve_oneT.T
oneal_Mean=np.mean(GbestScore_one) #计算平均适应度值
oneal_Std=np.std(GbestScore_one)#计算标准差
oneal_Best=np.min(GbestScore_one)#计算最优值
oneal_Worst=np.max(GbestScore_one)#计算最差值
oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线
#储存结果
df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]
df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve
#df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurve
if show_fit:
print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')
训练测试
#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数
计算,遍历所有的测试函数
#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):
for opt_algo_name in OPT_algorithms.keys():
try:
train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)
print(f'{fobj_name}的{opt_algo_name}算法完成')
except Exception as e: # 使用 except 来捕获错误
print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息
查看计算出来的评价指标
df_eval
由于这里大部分的测试函数最优值都是零,我们可以看到。GOA在很多函数上都没有接近于收敛的,说明它的效果不好,很垃圾。。。
画出迭代图
colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']
def plot_log_line(df_plot, fobj_name, step=10, save=False):
plt.figure(figsize=(6, 3), dpi=128)
for column, color, marker in zip(df_plot.columns, colors, markers):
plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(),
color=color, marker=marker, label=column, markersize=4, alpha=0.7)
plt.xlabel('Iterations')
plt.ylabel('f')
plt.legend(loc='best', fontsize=8)
if save:
plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')
plt.show()
# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():
df1=df_Curve[fobj_name]
print(f'{fobj_name}的不同算法效果对比:')
plot_log_line(df1,fobj_name,5,False) #保存图片-True
这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。。。当然观察后这个GOA算法性能是不太行的。 不如我前面的SMA,SSA,CS等其他的优化算法
后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的
当然需要本次案例的全部代码文件的还是可以参考:螳螂化算法
创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)