[医疗 AI ] 3D TransUNet:通过 Vision Transformer 推进医学图像分割

news2024/11/15 9:46:24

[医疗 AI ]
3D TransUNet:通过 Vision Transformer 推进医学图像分割’
论文地址 - https://arxiv.org/pdf/2310.07781

0. 摘要

医学图像分割在推进医疗保健系统的疾病诊断和治疗计划中起着至关重要的作用。U 形架构,俗称 U-Net,已被证明在各种医学图像分割任务中非常成功。然而,U-Net 基于卷积的操作本身限制了其有效建模远程依赖关系的能力。为了解决这些限制,研究人员转向了以其全局自我注意机制而闻名的 Transformer 作为替代架构。一个流行的网络是我们以前的 TransUNet,它利用 Transformers 的自我关注来补充 U-Net 的本地化信息与全局背景。在本文中,我们通过构建最先进的 nnU-Net 架构,将 2D TransUNet 架构扩展到 3D 网络,并充分探索 Transformers 在编码器和解码器设计中的潜力。我们介绍了两个关键组件:1) 一个 Transformer 编码器,它对来自卷积神经网络 (CNN) 特征图的图像补丁进行标记,从而能够提取全局上下文,以及 2) 一个 Transformer 解码器,它通过利用候选提案和 U-Net 特征之间的交叉注意力来自适应地优化候选区域。我们的调查表明,不同的医疗任务受益于不同的建筑设计。Transformer 编码器在多器官分割中表现出色,其中器官之间的关系至关重要。另一方面,Transformer 解码器被证明更有利于处理小且具有挑战性的分割目标,例如肿瘤分割。广泛的实验展示了集成基于 Transformer 的编码器和解码器集成到 U 形医疗图像分割架构中。TransUNet 在各种医疗应用中优于竞争对手,包括多器官分割、胰腺肿瘤分割和肝血管分割。它明显超越了 BrasTS2021 挑战赛中的顶级解决方案。代码和模型可在 https://github.com/Beckschen/ 3D-TransUNet 上获得。

1. 引言

卷积神经网络 (CNN),尤其是全卷积网络 (FCN) [1],在医学图像分割领域已经崛起。在他们的各种迭代中,U-Net 模型 [2] 的特点是其对称编码器-解码器设计,并通过跳过连接进行了增强以改善细节保留,是许多研究人员的首选。基于这种方法,在各种医学成像任务中取得了显著进展。这些进步包括磁共振 (MR) 成像中的心脏分割 [3]、使用计算机断层扫描 (CT) 扫描 [4]-[7] 的器官描绘以及结肠镜检查记录中的息肉分割 [8]。

尽管 CNN 具有无与伦比的表示能力,但由于卷积运算的固有局部性,它们在建模远程关系时经常步履蹒跚。这种限制在患者间质地、形状和大小差异较大的病例中尤为明显。认识到这一局限性,研究界越来越被 Transformers 所吸引,由于它们在捕捉全球背景方面的天生能力,这些模型完全建立在注意力机制之上 [9]。在医学图像分割领域,我们之前与 TransUNet [10] 的合作证明了变压器的潜力。然而,我们研究中的一个关键观察表明,简单地用 Transformer 替换 CNN 编码器可能会导致次优结果。Transformer 将输入作为 1D 序列处理,并优先考虑全局上下文建模,从而无意中产生低分辨率的特征。直接对此类特征进行上采样无法重新引入丢失的粒度。相比之下,结合 CNN 和 Transformer 编码器的混合方法似乎更有前途。它有效地利用了 CNN 的高分辨率空间细节,同时还受益于 Transformers 提供的全局环境。

在这项研究中,我们将原始的 2D TransUNet 架构扩展到 3D 配置,更深入地研究了 Transformer 在编码和解码过程中的战略性整合。这一飞跃植根于 nnU-Net 框架的实力,其愿景是超越其既定标准。我们的 3D TransUNet 通过两个主要机制展开:首先,Transformer 编码器将 CNN 特征图中的图像块标记化,允许将全局自聚焦特征与从编码路径跳过的高分辨率 CNN 特征无缝融合,以实现精确定位。其次,Transformer Decoder 将传统的每像素分割重新定义为掩码分类,将预测候选者构建为可学习的查询。具体来说,这些查询通过协同交叉注意力与局部多尺度 CNN 特征来逐步完善。此外,我们在 Transformer 解码器中引入了粗到细的注意力细化,对于每个分割类,使用专注于预测前景的注意力机制精心细化初始候选集,确保每个迭代细化为后续为后续设定新标准,最终不断提高分割精度。

通过将 Transformer 集成到类似 U-Net 架构的编码器和解码器组件中,我们证明了我们的设计允许框架保留 Transformer 的优势,同时增强医学图像分割。有趣的是,多器官分割在很大程度上依赖于全局上下文信息(例如不同腹部器官之间的相互作用),倾向于使用 Transformer 编码器设计。相反,像小目标分割这样的任务,如肿瘤检测,通常从 Transformer 解码器设计中受益更多。我们广泛的实验表明,与各种医学图像分割任务中的竞争方法相比,我们的方法具有卓越的性能。总而言之,我们的贡献可以总结如下:

  • 我们引入了一个以 Transformer 为中心的医学图像分割框架,将自我注意整合到序列到序列预测上下文中,适用于 2D 和 3D 医学图像分割任务。
  • 我们彻底研究了将视觉变压器集成到 U 形分割架构的编码器和解码器中的影响,为定制设计提供见解,以应对不同的医学图像分割挑战。
  • 我们在各种医学图像分割任务上取得了最先进的结果,并发布了我们的代码库以鼓励进一步探索将 Transformer 应用于医疗应用。

网络结构:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2069028.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

提高实时多媒体传输效率的三大方法

实时多媒体数据传输面临的挑战 实时多媒体数据的传输具有数据量巨大、对时延和时延抖动高度敏感及能容忍丢分组的特点。然而,当今互联网的网络层协议提供的仅是一种“尽最大努力服务”,对分组的端到端时延、时延抖动和分组丢失率等指标不做任何承诺。这…

MySQL的延迟复制

目录 1 MySQL 延迟复制介绍 1.1 延迟复制语法: 1.2 延迟复制可用于多种用途: 1.3 延迟复制的有关的参数 1.4 延迟复制的操作 2 MySQL 延迟复制 实操 2.1 实验环境 2.2 对 SLAVE --MySQL-3 进行延迟复制操作 2.3 停止相关进程的原因 2.4 实验测试 2.5 动…

Variomes:支持基因组变异筛选的高召回率搜索引擎

《Bioinformatics》2022 Variomes: https://candy.hesge.ch/Variomes Source code: https://github.com/variomes/sibtm-variomes SynVar: https://goldorak.hesge.ch/synvar 文章摘要(Abstract) 动机(Mot…

读软件开发安全之道:概念、设计与实施07密码学(上)

1. 加密工具 1.1. 加密工具之所以没有得到充分使用,就是因为人们往往认为密码学是一个准入门槛极高的专业领域 1.2. 如今的加密学大部分都源自纯数学,所以只要能够正确使用,加密学确实行之有效 1.2.1. 不代表这些算法本身确实无法破解&…

机器学习 | 基于wine数据集的KMeans聚类和PCA降维案例

KMeans聚类:K均值聚类是一种无监督的学习算法,它试图根据数据的相似性对数据进行聚类。无监督学习意味着不需要预测结果,算法只是试图在数据中找到模式。在k均值聚类中,我们指定希望将数据分组到的聚类数。该算法将每个观察随机分…

四大消息队列:Kafka、ActiveMQ、RabbitMQ、RocketMQ对比

四大消息队列:Kafka、ActiveMQ、RabbitMQ、RocketMQ对比 1. 社区活跃度2. 持久化消息3. 技术实现4. 高并发性能5. RabbitMQ与Kafka对比 💖The Begin💖点点关注,收藏不迷路💖 在软件开发中,消息队列&#xf…

【Redis】Redis数据结构——Hash 哈希

哈希 命令hsethgethexistshdelhkeyshvalshgetallhmgethlenhsetnxhincrbyhincrbyfloat命令小结 内部编码使用场景缓存⽅式对⽐ ⼏乎所有的主流编程语⾔都提供了哈希(hash)类型,它们的叫法可能是哈希、字典、关联数组、映射。在 Redis 中&#…

Python furl库:一键搞定复杂URL操作

更多Python学习内容:ipengtao.com 在Web开发和数据处理的过程中,URL的解析、修改和构建是不可避免的操作。然而,直接操作URL字符串不仅繁琐,而且容易出错。Python的furl库提供了一种简单且强大的方法来处理URL,使得URL…

简易的 Websocket + 心跳机制 + 尝试重连

文章目录 演示大纲基础 WebSocket前端: 添加心跳机制前端: 尝试重新连接历史代码 还没有写完,bug 是有的,我在想解决办法了… 演示 大纲 基础的 webSocket 连接前后端:添加心跳机制后端无心跳反应,前端尝试重新连接设置重新连接…

Java 日常反常识踩坑

作者:若渝 本文主要是日常业务开发中自身碰到过跟常识不一致的坑,问题虽然基础,但却可能造成比较大的线上问题。 一、转 BigDecimal 类型时精度丢失 public class Test { public static void main(String[] args) { BigDecimal bi…

算法-分隔链表

一、题目描述 (一) 题目 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。你应当保留两个分区中每个节点的初始相对位置。 (二) 示例 示例 1: 输入:…

用Python实现9大回归算法详解——07. 支持向量机回归算法

1. 支持向量机回归的基本概念 支持向量机回归(Support Vector Regression, SVR)是支持向量机(SVM)的一个应用,主要用于回归任务。与分类任务中的 SVM 类似,SVR 通过找到一个最大化边界(即支持向…

[WUSTCTF2020]spaceclub

上sublime txt 每一行的长短对应一个二进制位,长空格是1,短空格是0,全部替换掉得到 上python脚本 import binasciiwith open(attachment_5.txt, r) as file:lines file.readlines() # 逐行读取文本内容output # 初始化输出字符串# 遍历…

vscode 写了未定义的方法不报错,配置全局ESLint

最近接触了一个旧的vue2的项目,里面没有ts和eslint配置 在正在维护的页面里复制了其他页面的一个方法,方法里面包含lodash的cloneDeep,cloneDeep在这个页面并没有引入,但是vscode却没有提示,很不友好,容易…

JUC阻塞队列(五):SynchronousQueue

1、SynchronousQueue介绍 SynchronousQueue与前边的其他几个阻塞队列的差异是挺大的,在一般逻辑中队列是一个用 来存储数据的中间容器(前边几个阻塞队列也是用来存放数据的),但SynchronousQueue 却不是用来存放数据的,…

自动控制——用描述函数法分析非线性系统的稳定性与自激振荡

用描述函数法分析非线性系统的稳定性与自激振荡 引言 在控制系统中,非线性系统的稳定性和自激振荡(self-oscillation)问题往往较线性系统更为复杂。为了分析这些问题,描述函数法(Describing Function Method&#xf…

QtWebEngineView加载本地网页

直接加载放在exe同级目录下的资源是不行的,需要把资源通过qrc放到exe里面,然后通过类似qrc:/robotHtml/index.html这样的路径加载才行。 mWebView new QWebEngineView(parent);// mWebView->load(QUrl::fromLocalFile("./robotHtml/index.html&…

Vue3集成高德离线地图实践

1. 离线地图效果预览 2. 地图下载器下载离线地图 根据需要选择地图,我这边选择高德地图,层级选择0-15级别即可,进行下载 3. 放到nginx内网服务器 注意配置允许跨域 4. Vue3核心代码 // main.js // 初始化vue-amap initAMapApiLoader({o…

联想LJ2405打印机清零方法

联想LJ2405D_LJ2455D_LJ2605D硒鼓清零方法 在设备待机状态下,打开前盖,然后按住开始键不松手,直到所有指示灯全部亮起后再松开手,然后将硒鼓取出再装回,盖上前盖,清零操作完成。 联想LJ2405打印机碳粉清零…

编程学习之路:如何克服挫折感,成为更好的自己

目录 编程学习之路:如何克服挫折感,成为更好的自己 一、小瓜有话说 1、学习的广度可以带动深度 2、清空大脑和清空代码都是解决问题的方式 ①清空大脑:睡个觉,拉个屎,吃顿饭。 ②清空代码:换一种思维…