超详细前端AI蔬菜水果生鲜识别应用优化之路

news2025/1/23 7:09:20

目录

    • 背景
    • 原理
    • 技术选型
      • 技术栈
    • 构造封装
    • 优化
      • 模型选择
      • 让模型加载更快
        • 张量释放
      • 让indexddb更快
        • 将图片拆出单独建表
        • 特征向量降维
    • 后续规划
      • 模型的下发更新
      • 模型的增强学习
      • 识别数据的上传和下发

背景

先定性,带AI识别的生鲜收银机早就上市了,目前学习的只能说是别人玩剩的,但是依然收获满满,算是第一个ai识别的应用吧,关键是技术栈全是前端的,还是有一定参考价值

原理

自己的果蔬的ai识别系统我们参考了市面上的一套成熟方案:
识别过程:

特征值
相似度
模型识别
提取表中特征值
余弦相邻计算
返回相似度+值

学习过程:

输入label
传入特征值
存储特征值+label+图片

技术选型

技术栈

  1. python
    其实一开始是准备使用python的,因为性能方面更快,也更好写,开源的模型也多,但是不得不面对一个问题,就是我们的硬件是一套安卓系统,如果用python的话根据厂家的事例,要么将编写好的python程序转成c++的,要么用接口部署python服务后以restful接口形式提供。第一个方案太不熟了,毕竟还有业务压力,pass。第二个方案中途试了,但考虑到网络损耗,觉得还是部署本地的模型是最优解
    可以附上pyhton部分代码:
    模型就是用的mobilenet_fv.h5
    识别部分:没有使用数据库功能,本地提供了一个缓存机制,半成品
import tensorflow as tf
from tensorflow.keras.applications import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
from PIL import Image
import numpy as np
import cv2
import time
import io
import collections
import hashlib
from heapq import nlargest

# 初始化缓存,使用OrderedDict保持插入顺序,方便LRU策略
cache = collections.OrderedDict()
# 缓存容量
CACHE_CAPACITY = 1000

model = MobileNet(weights='imagenet', include_top=False, pooling='avg')


def cosine_similarity(features1, features2):
    dot_product = np.dot(features1.flatten(), features2.flatten())
    norm_features1 = np.linalg.norm(features1)
    norm_features2 = np.linalg.norm(features2)
    return dot_product / (norm_features1 * norm_features2)


def query_cache(image_features):
    if not cache:
        return None
    max_similarity = -1
    best_label = None
    for image_id, (cached_features, label) in cache.items():
        similarity = cosine_similarity(image_features, cached_features)
        if similarity > max_similarity:
            max_similarity = similarity
            best_label = label

    if max_similarity >= 0.5:
        return best_label
    else:
        return None


def query_cache_top5(image_features):
    if not cache:
        return []
    top_similarities = []
    for image_id, (cached_features, label) in cache.items():
        similarity = cosine_similarity(image_features, cached_features)
        top_similarities.append((f"{similarity:.4f}", label))
    # 使用 nlargest 获取前5个最大的相似度
    top_5_similarities = nlargest(5, top_similarities)
    return top_5_similarities


def get_image_id_from_hash(img):
    buffer = img.tobytes()
    return hashlib.md5(buffer).hexdigest()


class MainDetect:
    # 初始化
    def __init__(self):
        super().__init__()
        # 模型初始化
        self.image_id = None
        self.image_features = None
        self.model = tf.keras.models.load_model("models/mobilenet_fv.h5")  # todo 修改模型名称
        self.class_names = ['哈密瓜', '柠檬', '桂圆', '梨', '榴莲', '火龙果', '猕猴桃', '胡萝卜', '芒果', '苦瓜',
                            '草莓', '荔枝', '菠萝', '车厘子', '黄瓜']  # todo 修改类名,这个数组在模型训练的开始会输出

    # 预测图片
    def predict_img(self, image_data):
        img = Image.open(io.BytesIO(image_data))
        self.image_id = get_image_id_from_hash(img)
        img = np.asarray(img)  # 将图片转化为numpy的数组
        img = cv2.resize(img, (224, 224))
        img_cropped = img[:, :, :3]
        target = img_cropped.reshape(1, 224, 224, 3)
        start_time = time.time()  # 记录开始时间
        outputs = self.model.predict(target, batch_size=1, )  # 将图片输入模型得到结果
        end_time = time.time()  # 记录结束时间
        elapsed_time = end_time - start_time  # 计算时间差
        self.image_features = outputs
        result = query_cache_top5(outputs)
        # if len(result) == 0:
        #     result_index = int(np.argmax(outputs))
        #     result = [["1.0000", self.class_names[result_index]]]  # 获得对应的水果名称
        return {"result": result, "outputs": outputs, "time": f"{elapsed_time * 1000:.2f}ms"}

    def classify_image(self, image_data):
        img = Image.open(io.BytesIO(image_data))
        self.image_id = get_image_id_from_hash(img)
        img = np.asarray(img)  # 将图片转化为numpy的数组
        img = cv2.resize(img, (224, 224))
        img_cropped = img[:, :, :3]
        target = img_cropped.reshape(1, 224, 224, 3)
        # 进行预测
        start_time = time.time()  # 记录开始时间
        outputs = model.predict(target)
        end_time = time.time()  # 记录结束时间
        elapsed_time = end_time - start_time  # 计算时间差
        self.image_features = outputs
        result = query_cache_top5(outputs)
        # if len(result) == 0:
        #     result_index = int(np.argmax(outputs))
        #     result = [["1.0000", self.class_names[result_index]]]  # 获得对应的水果名称
        return {"result": result, "outputs": outputs, "time": f"{elapsed_time * 1000:.2f}ms"}

    def update_cache(self, label):
        # 如果缓存已满,移除最久未使用的条目
        if len(cache) >= CACHE_CAPACITY:
            cache.popitem(last=False)
        # 添加新条目
        cache[self.image_id] = (self.image_features, label)
        self.class_names.append(label)
        return True

    def clear_cache(slef):
        cache.clear()
        return True

服务部分:

from flask import Flask, request, jsonify
from flask_cors import CORS
from detect import MainDetect
import numpy as np

app = Flask(__name__)
CORS(app)  # 允许所有路由上的跨域请求
detector = MainDetect()


@app.route('/')
def home():
    return "Welcome to the Vegetable Recognize App!"


@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        return 'No file part', 400

    file = request.files['file']
    if file.filename == '':
        return 'No selected file', 400

    try:
        image_data = file.read()
        data = detector.classify_image(image_data)
        result = data["result"]
        outputs = data["outputs"]
        time = data["time"]
        return jsonify({"top5": result, "time": time, "features": outputs.tolist()})

    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/study', methods=['GET'])
def study():
    try:
        label = request.args.get('label')
        data = detector.update_cache(label)
        if data is True:
            return jsonify("success")
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/clear', methods=['GET'])
def recognize():
    try:
        detector.clear_cache()
        return jsonify("success")
    except Exception as e:
        return jsonify({'error': str(e)}), 500


if __name__ == "__main__":
    app.run(host='0.0.0.0', port=5000, debug=True)
  1. js
    既然要本地化,那就老老实实用tensorflowjs吧
    但是又面临一个问题,模型选用,这里其实走了一段弯路,一开始并没打算使用mobilenet或已经训练好的模型,想自己训练,后来发现数据集也很难搞,所以算了,使用别人的的吧;然后网上下了一个性能太差了,而且60mb太大了,加载半天;最后还是老老实实用mobilenet,然后把模型下到本地,香得很呀,这里使用的是v1版本,因为v2实在下不下来T.T

构造封装

直接展示成品吧:
识别的class:

import * as tf from '@tensorflow/tfjs';
import * as mobilenet from '@tensorflow-models/mobilenet';
import Storage, {StorageData} from './storage';
import {Tensor} from "@tensorflow/tfjs-core/dist/tensor";

interface Options {
    num?: number;
    count?: number;
    type?: string;
    modelUrl?: string;
    customModelUrl?: string;
    maxSize?: number;
    initCallback?: () => void;
    dbName?: string;
    tableName?: string;
    tableImgName?: string;
    version?: number;
}

class XsyxRecognize {
    private model: mobilenet.MobileNet | tf.LayersModel | null = null;
    private customModel: tf.LayersModel | null = null;
    private readonly num: number;
    private type: string;
    private modelUrl: string;
    private readonly customModelUrl: string;
    private readonly maxSize: number;
    private readonly initCallback?: () => void;
    private storage: Storage;
    private modelLoadReady: boolean = false;

    constructor(options: Options = {}) {
        this.num = options.num ?? 5;
        this.type = options.type ?? 'mobilenet';
        this.modelUrl = this.getModelUrl(options);
        this.customModelUrl = this.getModelUrl(options, true);
        this.maxSize = options.maxSize ?? (this.type === 'mobilenet' ? 224 : 96);
        this.initCallback = options.initCallback;
        this.storage = new Storage({
            dbName: options.dbName ?? 'featureDatabase',
            tableName: options.tableName ?? 'feature',
            tableImgName: options.tableImgName ?? 'img',
            version: options.version ?? 1,
            count: options.count ?? 10
        });
        (async () => {
            await this.init()
        })()
    }

    private getModelUrl(options: Options, isCustom: boolean = false): string {
        const env = process.env.NODE_ENV;
        return env === 'development'
            ? `http://127.0.0.1:8090/model/${isCustom ? 'custom' : 'mobilenet'}/model.json`
            : (isCustom ? (options.customModelUrl ?? `https://front-xps-cdn.xsyx.xyz/custom/hotstore/model/custom/model.json`) : (options.modelUrl ?? `https://front-xps-cdn.xsyx.xyz/custom/hotstore/model/${this.type === 'mobilenet' ? 'mobilenet' : 'init'}/model.json`));
    }

    async init(): Promise<void> {
        await Promise.all([this.storage.openDB(), this.load()]);
        this.initCallback?.();
    }

    async load(): Promise<void> {
        if (this.model === null) {
            if (this.type === 'mobilenet') {
                try {
                    const res = await Promise.all([mobilenet.load({
                        version: 1,
                        alpha: 1.0,
                        modelUrl: this.modelUrl
                    }), tf.loadLayersModel(this.customModelUrl)])
                    this.model = res[0];
                    this.customModel = res[1]
                } catch (e) {
                    console.log('预制模型加载失败,开始加载备用本地模型,原因:' + e);
                    this.type = 'custom';
                    this.modelUrl = 'https://front-xps-cdn.xsyx.xyz/custom/hotstore/model/init/model.json';
                    await this.load();
                }
            } else {
                this.model = await tf.loadLayersModel(this.modelUrl);
            }
            this.modelLoadReady = true;
            console.log('模型已加载');
        } else {
            console.log('模型加载中,请勿重复加载');
        }
    }

    async predict(obj: File | Blob | HTMLCanvasElement): Promise<any> {
        let type: string;
        if (obj instanceof File) {
            type = 'File';
        } else if (obj instanceof Blob) {
            type = 'Blob';
        } else if (obj instanceof HTMLCanvasElement) {
            type = 'Canvas';
        } else {
            throw new Error('Unsupported object type');
        }
        // @ts-ignore
        return await this[`predict${type}`]?.(obj);
    }

    async predictFile(file: File | Blob): Promise<any> {
        return new Promise((resolve, reject) => {
            const reader = new FileReader();
            reader.onload = async (event) => {
                const img = new Image();
                img.onload = async () => {
                    const canvas = document.createElement('canvas');
                    const ctx = canvas.getContext('2d');

                    const scale = Math.min(this.maxSize / img.width, this.maxSize / img.height);
                    canvas.width = img.width * scale;
                    canvas.height = img.height * scale;

                    ctx!.drawImage(img, 0, 0, canvas.width, canvas.height);

                    try {
                        const result = await this.predictCanvas(canvas);
                        resolve(result);
                    } catch (e) {
                        reject(e);
                    }
                };
                img.src = (event.target as FileReader).result as string;
                img.onerror = () => {
                    reject('图片加载失败');
                };
            };
            reader.readAsDataURL(file);
        });
    }

    async predictBlob(blob: Blob): Promise<any> {
        return await this.predictFile(blob);
    }

    async predictCanvas(canvas: HTMLCanvasElement): Promise<any> {
        try {
            if (!this.model || !this.modelLoadReady) {
                throw new Error('模型尚未加载完成');
            }
            const prediction = tf.tidy(() => {
                const imgTensor = tf.browser.fromPixels(canvas);
                const mImageTensor = imgTensor.resizeBilinear([this.maxSize, this.maxSize])
                    .toFloat()
                    .div(tf.scalar(255.0))
                    .expandDims();
                console.time('predict');
                let prediction;
                if (this.type === 'mobilenet') {
                    prediction = (this.model as mobilenet.MobileNet).infer(imgTensor, true);
                    //降维
                    prediction = (this.customModel as tf.Sequential).predict(prediction) as Tensor;
                    // 归一化
                    prediction = tf.div(prediction, tf.norm(prediction));
                } else {
                    prediction = (this.model as tf.LayersModel).predict(mImageTensor);
                }
                console.timeEnd('predict');
                return prediction
            })
            //@ts-ignore
            const features = await prediction.flatten().array();
            const result = await this.findTopNSimilar(features);
            return {
                features,
                top5: result
            };
        } catch (e) {
            throw new Error('识别错误:' + e);
        }
    }

    cosineSimilarity(vecA: number[], vecB: number[]): number {
        const dotProduct = vecA.reduce((sum, value, index) => sum + value * vecB[index], 0);
        const magnitudeA = Math.sqrt(vecA.reduce((sum, value) => sum + value * value, 0));
        const magnitudeB = Math.sqrt(vecB.reduce((sum, value) => sum + value * value, 0));
        return dotProduct / (magnitudeA * magnitudeB);
    }

    async findTopNSimilar(inputFeatures: number[]): Promise<{ label: string; similarity: number }[]> {
        console.time('read')
        const featureDatabase = await this.storage.getAll();
        console.timeEnd('read')
        console.time('calc')
        const similarities = featureDatabase.map(({features, label}) => {
            let similarity = 0
            if (features) {
                similarity = this.cosineSimilarity(inputFeatures, features);
            }
            return {label: label as string, similarity: similarity as number};
        });

        similarities.sort((a, b) => b.similarity - a.similarity);

        const uniqueLabels = new Set<string>();
        const topNUnique: { label: string; similarity: number }[] = [];
        for (const item of similarities) {
            if (!uniqueLabels.has(item.label as string)) {
                uniqueLabels.add(item.label);
                topNUnique.push(item);
                if (topNUnique.length === this.num) break;
            }
        }
        console.timeEnd('calc')
        return topNUnique;
    }

    async study(data: StorageData): Promise<string> {
        await this.storage.addData(data);
        return '学习完成';
    }

    async update(newData: any): Promise<string> {
        await this.storage.update(newData);
        return '更新完成';
    }

    /**
     * 训练模型
     */
    async trainModel(options: {
        units?: number,
        activation?: undefined,
        inputShape?: number[]
        optimizer?: string
        loss?: string
        modelName?: string
    }) {
        const {
            units = 256,
            activation = 'relu',
            inputShape = [1024],
            optimizer = 'adam',
            loss = 'categoricalCrossentropy',
            modelName = 'my-model'
        } = options
        const model = tf.sequential();
        model.add(tf.layers.dense({
            units,
            activation,
            inputShape
        })); // 输出 256 维的特征向量
        model.add(tf.layers.dense({units})); // 这里 numOutputFeatures 是你希望的输出特征维度
        // 编译模型
        model.compile({optimizer, loss});
        await model.save(`downloads://${modelName}`)
    }

    async getByName(indexName: string, val: any): Promise<any> {
        return await this.storage.getByName(indexName, val);
    }

    closeDB(): void {
        this.storage.closeDB();
    }

    async remove(val: any, tableName?: string): Promise<string> {
        await this.storage.remove(val, tableName);
        return '清除完成';
    }

    async createTable(tableName: string, keyPath: string, autoIncrement: boolean, indexName?: string): Promise<void> {
        await this.storage.createTable(tableName, keyPath, autoIncrement, indexName);
    }

    async delTable(): Promise<string> {
        await this.storage.delTable();
        return '清除完成';
    }

    async clearTable(tableName: string): Promise<string> {
        await this.storage.clearTable(tableName);
        return '清除完成';
    }

    async deleteDB(name: string): Promise<string> {
        await this.storage.deleteDB(name);
        return '清除完成';
    }
}

export default XsyxRecognize;

数据的增删改查:

interface StorageOptions {
    dbName: string;
    tableName: string;
    tableImgName: string;
    version: number;
    keyPath?: string;
    count: number;
    indexArr?: Index[];
    autoIncrement?: boolean;
    onupgradeneeded?: (db: IDBDatabase, table: IDBObjectStore) => void;
}

interface Index {
    name: string;
    keyPath: string;
    unique?: boolean;
    multiEntry?: boolean;
}

export interface StorageData {
    features?: number[],
    label?: string,
    id?: IDBValidKey,
    imgId?: IDBValidKey,
    img?: Blob
}

class Storage {
    private readonly dbName: string;
    private readonly tableName: string;
    private readonly tableImgName: string;
    private readonly version: number;
    private readonly keyPath: string;
    private readonly count: number;
    private readonly autoIncrement: boolean;
    private indexArr: Index[];
    private db: IDBDatabase = {} as IDBDatabase;
    private readonly onupgradeneeded?: (db: IDBDatabase, table: IDBObjectStore) => void;

    constructor(options: StorageOptions) {
        const {
            dbName,
            tableName,
            tableImgName,
            version,
            keyPath,
            indexArr,
            autoIncrement,
            onupgradeneeded,
            count
        } = options;
        this.dbName = dbName;
        this.tableName = tableName;
        this.tableImgName = tableImgName;
        this.version = version;
        this.count = count;
        this.keyPath = keyPath ?? 'id';
        this.autoIncrement = autoIncrement ?? true;
        this.indexArr = indexArr ?? [];
        this.onupgradeneeded = onupgradeneeded;
    }

    openDB(): Promise<IDBDatabase> {
        return new Promise((resolve, reject) => {
            //@ts-ignore
            const indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB;
            const request = indexedDB.open(this.dbName, this.version);

            request.onsuccess = (event: Event) => {
                const target = event.target as IDBOpenDBRequest;
                this.db = target.result as IDBDatabase;
                console.log("数据库连接成功");
                resolve(this.db);
            };

            request.onerror = (event) => {
                const target = event.target as IDBOpenDBRequest;
                console.log("数据库打开报错");
                reject(target.error);
            };

            request.onupgradeneeded = (event) => {
                console.log("数据库更新");
                this.db = (event.target as IDBOpenDBRequest).result;
                let newTable: IDBObjectStore;
                if (!this.db.objectStoreNames.contains(this.tableName)) {
                    const keyCfg = {keyPath: this.keyPath, autoIncrement: this.autoIncrement};
                    newTable = this.db.createObjectStore(this.tableName, keyCfg);
                    if (!newTable.indexNames.contains('label')) {
                        newTable.createIndex('label', 'label', {unique: false});
                    }
                    this.indexArr.forEach((v) => {
                        newTable.createIndex(v.name, v.keyPath, {unique: v.unique, multiEntry: v.multiEntry});
                    });
                } else {
                    const transaction = this.db.transaction(this.tableName, 'readwrite');
                    newTable = transaction.objectStore(this.tableName);
                }
                let imgTable: IDBObjectStore;
                if (!this.db.objectStoreNames.contains(this.tableImgName)) {
                    imgTable = this.db.createObjectStore(this.tableImgName, {keyPath: 'imgId'});
                    if (!imgTable.indexNames.contains('imgId')) {
                        imgTable.createIndex('imgId', 'imgId', {unique: true});
                    }
                } else {
                    const transaction = this.db.transaction(this.tableImgName, 'readwrite');
                    imgTable = transaction.objectStore(this.tableImgName);
                }
                this.onupgradeneeded?.(this.db, imgTable);
            };
        });
    }

    /**
     * 创建表
     * @param tableName
     * @param keyPath
     * @param autoIncrement
     * @param indexName
     */
    createTable(tableName: string, keyPath: string, autoIncrement: boolean, indexName?: string): Promise<IDBObjectStore> {
        return new Promise((resolve) => {
            const keyCfg = {keyPath, autoIncrement};
            const newTable = this.db.createObjectStore(tableName, keyCfg);
            if (indexName) {
                newTable.createIndex(indexName, keyPath, {unique: false});
            }
            resolve(newTable);
        });
    }

    /**
     * 读取所有数据
     * @param tableName
     */
    readAll(tableName: string = this.tableName): Promise<StorageData[]> {
        return new Promise((resolve, reject) => {
            const objectStore = this.db.transaction(tableName, 'readonly').objectStore(tableName);
            const index = objectStore.index('label');
            const results: StorageData[] = [];
            const uniqueLabels = new Map<string, StorageData[]>();
            // Open a cursor to iterate over the index
            const cursorRequest = index.openCursor();
            cursorRequest.onsuccess = (event) => {
                const cursor = (event.target as IDBRequest).result;
                if (cursor) {
                    const label = cursor.value.label;
                    if (!uniqueLabels.has(label)) {
                        uniqueLabels.set(label, []);
                    }
                    // @ts-ignore
                    if (this.count ? uniqueLabels.get(label)?.length < this.count : true) {
                        uniqueLabels.get(label)?.push(cursor.value);
                    }
                    cursor.continue();
                } else {
                    // When cursor has finished iterating, aggregate results
                    uniqueLabels.forEach((data) => {
                        results.push(...data);
                    });
                    resolve(results);
                }
            };
            cursorRequest.onerror = (event) => {
                console.error('Cursor request error:', (event.target as IDBRequest).error);
                reject((event.target as IDBRequest).error);
            };
        });
    }

    getAll(tableName: string = this.tableName): Promise<StorageData[]> {
        return new Promise((resolve, reject) => {
            const objectStore = this.db.transaction(tableName, 'readonly').objectStore(tableName);
            const request = objectStore.getAll();
            request.onsuccess = (event) => {
                resolve((event.target as IDBRequest).result);
            };
            request.onerror = (event) => {
                reject(event);
            };
        });
    }

    /**
     * 通过光标读取表所有数据
     * @param tableName
     */
    readAllByCursor(tableName: string = this.tableName): Promise<StorageData[]> {
        return new Promise((resolve, reject) => {
            const objectStore = this.db.transaction(tableName, 'readonly').objectStore(tableName);
            const request = objectStore.openCursor();
            const allData: StorageData[] = [];

            request.onsuccess = (event) => {
                const cursor = (event.target as IDBRequest).result;
                if (cursor) {
                    allData.push(cursor.value);
                    cursor.continue();
                } else {
                    resolve(allData);
                }
            };

            request.onerror = (event) => {
                reject(event);
            };
        });
    }

    /**
     * 添加数据
     * @param data
     */
    addData(data: StorageData): Promise<IDBValidKey> {
        return new Promise((resolve, reject) => {
            const transaction = this.db.transaction([this.tableName, this.tableImgName], 'readwrite');
            const store = transaction.objectStore(this.tableName);
            // 存储 label 数据
            if ("label" in data) {
                const request = store.add({label: data.label, features: data.features});
                request.onsuccess = (event) => {
                    // 存储 img 数据
                    const imgId = request.result; // 使用 label 的 ID 作为 img 的 ID
                    const imgStore = transaction.objectStore(this.tableImgName);
                    const res = imgStore.add({imgId, img: data.img})
                    res.onsuccess = (event) => {
                        console.log("数据写入成功");
                        resolve((event.target as IDBRequest).result);
                    }
                };

                request.onerror = (event) => {
                    console.log("数据写入失败");
                    reject(event);
                };
            }
        });
    }

    /**
     * 更新数据
     * @param newData
     */
    update(newData: StorageData): Promise<void> {
        return new Promise((resolve, reject) => {
            const transaction = this.db.transaction([this.tableName, this.tableImgName], 'readwrite');
            const objectStore = transaction.objectStore(this.tableName);
            const {id, label, features, img, imgId} = newData
            const request = objectStore.put(id ? {
                id,
                label,
                features,
            } : {
                label,
                features
            });
            request.onsuccess = async (event) => {
                const objectImgStore = transaction.objectStore(this.tableImgName);
                const res = objectImgStore.put(imgId ? {
                    imgId,
                    img
                } : {
                    imgId: (event.target as IDBRequest).result,
                    img
                })
                res.onsuccess = (e) => {
                    console.log("数据更新成功");
                    resolve((event.target as IDBRequest).result);
                }
            };

            request.onerror = (event) => {
                console.log("数据更新失败");
                reject(event);
            };
        });
    }

    /**
     * 根据索引读取数据
     * @param indexName
     * @param val
     */
    getByName(indexName: string, val: IDBValidKey): Promise<StorageData[]> {
        return new Promise((resolve, reject) => {
            if (!this.db.objectStoreNames.contains(this.tableName)) {
                reject('表不存在');
            }
            if (!this.db.transaction(this.tableName).objectStore(this.tableName).indexNames.contains(indexName)) {
                reject('索引不存在');
            }
            const transaction = this.db.transaction([this.tableName], 'readonly');
            const store = transaction.objectStore(this.tableName);

            const index = store.index(indexName);
            const request = index.getAll(val);

            request.onsuccess = async (event) => {
                const result = (event.target as IDBRequest).result;
                if (result) {
                    for (const item of result) {
                        const imgId = item.id as IDBValidKey
                        const imgObj = await this.readData(imgId, this.tableImgName) as StorageData
                        item.img = imgObj.img
                        item.imgId = imgObj.imgId
                    }
                    resolve(result);
                } else {
                    console.log('未查到结果');
                }
            };
        });
    }


    /**
     * 根据主键读取某一条数据
     * @param val
     * @param tableName
     */
    readData(val: IDBValidKey, tableName: string = this.tableName): Promise<StorageData | undefined> {
        return new Promise((resolve, reject) => {
            const objectStore = this.db.transaction(tableName, 'readonly').objectStore(tableName);
            const request = objectStore.get(val);

            request.onerror = (e) => {
                console.log('事务失败');
                reject(e);
            };

            request.onsuccess = (e) => {
                if (request.result) {
                    resolve(request.result);
                } else {
                    console.log('未获得数据记录');
                    reject('未获得数据记录');
                }
            };
        });
    }

    /**
     * 导出数据
     */
    async exportData(): Promise<string> {
        return new Promise(async (resolve) => {
            const data = await this.readAllByCursor();
            for (const item of data) {
                const imgId = item.id as IDBValidKey
                const imgObj = await this.readData(imgId, this.tableImgName) as StorageData
                item.img = imgObj.img
                item.imgId = imgObj.imgId
            }
            resolve(JSON.stringify(data))
        })
    }

    /**
     * 导入数据
     * @param data 导入的数据
     * @param isClear 是否先清空表
     * @returns {Promise<string>} 导入完成的通知
     */
    async importData(data: StorageData[], isClear: boolean = false): Promise<'导入完成'> {
        return new Promise(async (resolve, reject) => {
            if (isClear) {
                await this.clearTable(this.tableName);
                await this.clearTable(this.tableImgName);
            }
            for (const item of data) {
                await this.update(item)
            }
            resolve('导入完成')
        });
    }

    // 关闭数据库,相对于open
    closeDB(): void {
        this.db?.close();
    }

    //  删除数据库中指定主键值的某条记录
    remove(val: IDBValidKey, tableName: string = this.tableName): Promise<void> {
        return new Promise((resolve) => {
            const request = this.db.transaction(tableName, 'readwrite').objectStore(tableName).delete(val);  // 删除指定主键值的某条记录
            request.onsuccess = (event) => {
                resolve();
                console.log('数据删除成功');
            };
        });
    }

    // 删除某张指定表名的表
    delTable(): Promise<unknown> {
        return new Promise(async (resolve, reject) => {
            if (this.db.objectStoreNames.contains(this.tableName)) {
                try {
                    this.db.deleteObjectStore(this.tableName);
                    this.db.deleteObjectStore(this.tableImgName);
                    console.log(`删除表成功`);
                    resolve(`Object store ${this.tableName} deleted successfully`);
                } catch (error) {
                    reject(`Failed to delete object store ${this.tableName}: ${error}`);
                }
            } else {
                resolve(`Object store ${this.tableName} does not exist`);
            }
        });
    }

    // 对某张表清空但不删除
    clearTable(tableName: string = this.tableName): Promise<'清空完成'> {
        return new Promise((resolve, reject) => {
            const transaction = this.db.transaction([this.tableName, this.tableImgName], 'readwrite') as IDBTransaction;
            const store = transaction.objectStore(this.tableName) as IDBObjectStore;
            const imgStore = transaction.objectStore(this.tableImgName) as IDBObjectStore;
            store.clear();
            imgStore.clear();
            transaction.oncomplete = () => {
                resolve('清空完成');
            };
            transaction.onerror = (event) => {
                reject(event)
            }
        });
    }

    // 删除数据库,name为 open时用的名字
    deleteDB(name: string = this.dbName): Promise<void> {
        return new Promise((resolve, reject) => {
            this.closeDB();
            if (window.indexedDB) {
                const DBDelRequest = window.indexedDB.deleteDatabase(name);  // 删除指定数据库
                DBDelRequest.onerror = (event) => {
                    console.log("删除失败");
                    reject((event.target as IDBRequest).error);
                };
                DBDelRequest.onsuccess = (event) => {
                    console.log("删除成功");
                    resolve();
                };
            } else {
                reject(new Error('IndexedDB not supported'));
            }
        });
    }
}

export default Storage;

优化

模型选择

正如前面所说,直接mobilenet起手,特征值提取又快又准

让模型加载更快

因为是安卓机,性能上比windows差很多,所以每次下载+加载模型这两步真的很久,所以我们能做的就是把模型作为静态文件一起放在项目里,省去下载那部分时间:
vue项目就是public文件下,你懂的

张量释放

一定要记得把识别过程中的张量都释放,不然会越用越卡
在这里插入图片描述

让indexddb更快

原本在计算相似度时查特征值是使用的光标进行的所有特征值查询,但后来发现其实使用getAll更快,所以推荐大家使用getAll方法,因为光标还有一个一个读的过程
在这里插入图片描述

将图片拆出单独建表

整个识别过程其实主要是三步,识别+读取+计算,
识别和计算的速度其实很快了,主要耗时在读取数据,为了优化indexddb的读取速度,减小数据量势在必行
所以把一开始存在一起的图片blob文件进行了拆分,通过特征值表的id进行关联
在这里插入图片描述

特征向量降维

同样是为了减小数据体积,所以准备将原本mobilenet给出的1024维度的特征向量进行降维到256,数据量骤减,读取速度更快,代价是识别速度会慢一点,但相比读取速度的提升,这些代价是十分小的

  1. 先基于mobilenet训练自己的降维模型
    在这里插入图片描述

一个注意点,由于运行在浏览器内,mode.save时如果没有对应接口建议直接下载,不然会总是报找不到路径的错

  1. 基于mobilenet的特征向量使用自己的模型进行降维
    在这里插入图片描述

  2. 一定要归一化处理,不然算出来的近似值都很低
    在这里插入图片描述

  3. 自己训练的模型要保存,然后下次识别前要先加载,不然每次识别的结果都不一样,这个坑替你们踩了
    在这里插入图片描述

后续规划

开发加调试差不多四天吧,上线后效果还不错,比原厂家提供的识别速度快了3倍多,基本达到了windows系统下的识别效果
在这里插入图片描述

模型的下发更新

基于此次封装的插件,后续为了应对各种业务场景,需要有一个模型的更新回滚机制,来保证远程就能处理实际问题

模型的增强学习

后续也可以在服务器上将搜集上来的已识别并打好标了的图像进行增强学习,提升准确度的同时也为之后的实时检测打下基础

识别数据的上传和下发

目前数据是存在本机,但后续一定是存服务器上的,这样不仅可以实现数据在各收银机的共用,还能为模型的增强学习提供数据集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2066526.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第48课 Scratch入门篇:仙女棒

仙女棒 故事背景: 夜空中,仙女棒划破天空,划过一条一条美丽的光线!! 程序原理: 自己动手设计一个动态变化的角色,实现美丽的仙女棒;仙女棒移动的轨迹,是通过背景的重叠而产生的,这里就是我们今天要学习的一个新知识:“图章”,图章跟我们平时盖章类似,就是复制一个…

C++概观:并发及实用工具(A Tour of C++: Concurrency and Utilities)

&#xff08;说明&#xff1a;本章内容讲的主要是 c11 标准相对于之前的标准新增加的内容。本书作者是 c 之父 Bjarne Stroustrup&#xff0c;这位作者的行文风格就是站在c的设计者角度进行讲解&#xff0c;内容极其丰富&#xff0c;但并没有像传统编程书籍那样事无具细地罗列知…

无人机之云台的重要性

无人机云台在无人机技术中占据着举足轻重的地位&#xff0c;其重要性体现在多个方面&#xff1a; 首先&#xff0c;无人机云台是确保拍摄稳定性的关键组件。无人机在飞行过程中&#xff0c;尤其是遇到风力干扰或进行复杂飞行动作时&#xff0c;机身容易产生震动和晃动。而云台的…

Nginx简介和安装

一、 Nginx 简介 1、Nginx概述 Nginx (“engine x”) 是一个高性能的 HTTP 和反向代理服务器,特点是占有内存少&#xff0c;并发能 力强&#xff0c;事实上nginx的并发能力确实在同类型的网页服务器中表现较好&#xff0c;中国大陆使用nginx 网站用户有&#xff1a;百度、京东…

【Oracle点滴积累】解决ORA-29913和KUP-04095: preprocessor command的方法

广告位招租&#xff01; 知识无价&#xff0c;人有情&#xff0c;无偿分享知识&#xff0c;希望本条信息对你有用&#xff01; 今天和大家分享ORA-29913: error in executing ODCIEXTTABLEFETCH callout和KUP-04095: preprocessor command错误的解决方法&#xff0c;本文仅供参…

基于FastCAE平台开发的多物理场仿真软件开发分享

开发目的 基于FastCAE平台开发的多物理场仿真软件&#xff0c;是为了更有效地控制多物理场耦合问题中的重要特征参数&#xff0c;如流体与固体的相互作用力和温度分布&#xff0c;进行了耦合分析。通过该耦合分析&#xff0c;能够深入研究多物理场相互作用的特性&#xff0c;并…

车载T-Box通信稳定性弱网测试方案

作者介绍 T-Box&#xff08;Telematics Box&#xff0c;车载终端&#xff09;是一种安装在汽车上的控制器&#xff0c;用于实现车辆的远程监控、数据采集、通信和控制等功能。T-Box是连接汽车与外部世界的关键节点之一&#xff0c;在汽车网联中扮演着重要的角色。通过T-Box&…

css 将背景图片居中显示,并且显示全,不拉伸的效果实现,图片设置宽度,高度自适应,并且显示全。

1、背景自适应的css&#xff1a; .bg-tns {background-image: url(img/xxx.jpg);background-size: cover;background-position: center; /* 将图片居中显示 */min-height: calc(100vh-100px); /* 确保至少为视口高度 */} 这个布局是这样的&#xff1a; 这里的背景图的高度&am…

如何加密车载U盘?车载U盘加密软件推荐

在数字化浪潮中&#xff0c;U盘凭借其卓越的便携性&#xff0c;已然成为我们日常存储与传输数据的不可或缺之利器。然而&#xff0c;这一便利性的背后&#xff0c;数据安全问题也日益严峻&#xff0c;尤其是在需要将U盘连接至多样设备如车载音响、家庭影院系统及电视等场景下。…

毛利率承压连亏三年后一季度业绩暴增,百利天恒谋求A+H双上市

《港湾商业观察》施子夫 7月10日&#xff0c;四川百利天恒药业股份有限公司&#xff08;以下简称&#xff0c;百利天恒&#xff09;递表港交所主板&#xff0c;联席保荐机构高盛、摩根大通和中信证券。 此次递表港交所系百利天恒第二次谋求上市&#xff0c;若上市成功&#x…

高质量的课堂,就是让学生“玩起来”

声明&#xff1a;此篇为 ai123.cn 原创文章&#xff0c;转载请标明出处链接&#xff1a;https://ai123.cn/2202.html Hey体育老师们&#xff0c;&#x1f3c0;&#x1f3f8;️你们有没有发现现在的学生好像对体育课的热情不如以前了&#xff1f;是不是因为咱们的体育设施不够&a…

【算法】时间复杂度(快速排序,归并排序,堆排序)

1 归并排序先分解再合并 2 归并排序演示 3 时间复杂度(快速排序&#xff0c;归并排序&#xff0c;堆排序) 1 归并排序先分解再合并 2 归并排序演示 """ 归并排序&#xff08;Merge Sort&#xff09;是一种基于分治思想的排序算法。 它将一个大的问题递归地分解…

timing window file中的S L T指什么意思

我正在「拾陆楼」和朋友们讨论有趣的话题&#xff0c;你⼀起来吧&#xff1f; 拾陆楼知识星球入口 来自星球提问&#xff1a; I S L T的含义如下: 每行的数据代表含义如下:

2024年最新Flink教程,从基础到就业,大家一起学习--Flink运行架构底层源码详解+实战

本文涉及到大量的底层原理知识&#xff0c;包括运行机制图解都非常详细&#xff0c;还有一些实战案例&#xff0c;所以导致本篇文章会比较长&#xff0c;内容比较多&#xff0c;由于内容太多&#xff0c;很多目录可能展示不出来&#xff0c;需要去细心的查看&#xff0c;非常适…

初始化列表 / 隐式转换 / 静态

目录 初始化列表隐式转换单参数的隐式类型转换多参数的隐式类型转换explicit关键字 static 初始化列表 大部分时候成员变量在对象实例化的时候调用构造函数就整体定义了&#xff0c;注意此时只有定义&#xff0c;不算初始化。而定义后的值的值是在构造函数里面给的。我们知道构…

ChaCha20:高效且安全的流密码算法

随着互联网的普及和数据安全意识的提高&#xff0c;加密算法在保护个人隐私和商业秘密方面发挥着越来越重要的作用。ChaCha20是一种流密码算法&#xff0c;由丹伯恩斯坦在2008年提出&#xff0c;后被广泛应用于网络通信和数据加密场景。本文将探讨ChaCha20的原理和特点。 ChaCh…

「ComfyUI」增强图像细节只需要一个节点,SD1.5、SDXL、FLUX.1 全支持,简单好用!

前言 ‍‍‍‍‍前 言 今天听雨给小伙伴们介绍一个非常简单&#xff0c;但又相当好使的一个插件。 功能很简单&#xff0c;就是增加或者减少图像的细节&#xff0c;节点也很简单&#xff0c;就一个节点&#xff0c;只需要嵌入我们的 ComfyUI 的基础工作流中就可以了&#xf…

高频变压器无功补偿怎么做

高频变压器的无功补偿主要是为了提高功率因数、减小无功损耗、提高电源利用率。在高频电路中&#xff0c;由于频率较高&#xff0c;传统的无功补偿方法需要进行一定的调整和优化。以下是高频变压器无功补偿的一些方法和建议&#xff1a; 1、无功补偿电容器 高频电容器选择&…

阿里云OSS跨账号迁移过程

阿里云OSS跨账号迁移过程 关于OSS在线迁移服务的更新说明 旧版在线迁移已停止服务,用户需切换至新版在线迁移。与旧版相比,新版在线迁移的主要区别在于身份验证方式的调整。新版不再使用AK/AS(AccessKey ID和AccessKey Secret)进行认证,而是采用了角色授权机制。这一变化旨…

【CTF Web】CTFShow 版本控制泄露源码 Writeup(目录扫描+.git泄漏)

版本控制泄露源码 10 版本控制很重要&#xff0c;但不要部署到生产环境更重要。 解法 用 dirsearch 扫描。 dirsearch -u https://a21fb823-c708-47ea-91c8-945c25d2ddb1.challenge.ctf.show/找到 .git 仓库。 访问&#xff1a; https://a21fb823-c708-47ea-91c8-945c25d2dd…