SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)是由 David Lowe 于 1999 年提出的一种特征提取算法,用于检测和描述图像中的局部特征点。SIFT 特征具有旋转、尺度和光照不变性,因此在各种计算机视觉任务中广泛应用,如图像匹配、物体识别等。
SIFT 的工作原理主要分为四个步骤:
1. 尺度空间极值检测(Scale-Space Extrema Detection)
-
构建尺度空间:首先,通过对图像进行高斯模糊,构建一系列尺度空间(scale-space),每个尺度对应不同的高斯模糊程度。具体地,对于一个图像 ,在尺度空间中生成的模糊图像 L(x,y,σ) 可以表示为:
其中,是高斯核,表示尺度,是卷积操作。
-
高斯差分(DoG)金字塔:通过计算不同尺度之间的差分,得到高斯差分(Difference of Gaussian, DoG)金字塔:
这里,k 是一个常数,通常取 。DoG 金字塔用于检测不同尺度下的关键点。
-
检测极值点:在 DoG 金字塔中,每个像素点与其 8 个邻域像素(同一尺度)及上下两个尺度的 18 个像素进行比较,如果该点在这些 26 个像素中是极值点,则将其标记为候选关键点。
2. 关键点精确定位(Keypoint Localization)
- 亚像素级精确定位:对候选关键点进行亚像素级别的精确定位,通过在 DoG 函数的泰勒展开近似模型上计算偏导数和二阶导数矩阵,对关键点的位置进行细化。
- 去除低对比度点和边缘响应点:对比度较低的点容易受噪声影响,因此需要去除。同时,利用 Hessian 矩阵去除边缘响应点,因为这些点的稳定性较差。
3. 方向分配(Orientation Assignment)
- 计算梯度方向直方图:对于每个精确定位后的关键点,在其邻域内计算每个像素的梯度幅度和方向,并根据方向划分直方图。通常将梯度方向分成 36 个方向(每 10° 一个区间)。
- 赋予主要方向:主方向为直方图中最高峰对应的方向,同时可以赋予其他峰值方向以生成新的关键点,从而保证 SIFT 特征的旋转不变性。
4. 关键点描述符生成(Keypoint Descriptor)
- 构建描述符:在关键点邻域内,以主方向为中心,计算 16 个方向直方图(4x4 网格,每个网格内包含 8 个方向),形成 128 维的特征向量。描述符通过归一化处理,以提高对光照变化的鲁棒性。
总结
SIFT 通过在不同尺度空间中检测图像的极值点,精确定位这些关键点,分配方向以保持旋转不变性,并生成基于局部梯度信息的描述符,从而实现对图像中局部特征的有效表示。SIFT 特征具有良好的稳定性和鲁棒性,能够应对尺度、旋转、亮度等变化,在图像匹配、物体识别等领域被广泛使用。