订单到期关闭如何实现?

news2025/1/10 16:01:25

目录

一、被动关闭

二、定时任务

三、JDK自带的DelayQueue

四、Netty的时间轮

五、Kafka的时间轮

六、RocketMQ延迟消息

七、RabbitMQ死信队列

八、RabbitMQ插件

九、Redis过期监听

十、Redis的Zset

十一、Redisson


在电商、支付等系统中,一般都是先创建订单(支付单),再给用户一定的时间进行支付,如果没有按时支付的话,就需要把之前的订单(支付单)取消掉。这种类似的场景有很多,还有比如到期自动收货、超时自动退款、下单后自动发送短信等等都是类似的问题。

订单的到期关闭的实现有很多种方式,分别有:

  1. 被动关闭(不推荐)
  2. 定时任务(推荐,适合时间精度要求不高的场景)
  3. DelayQueue(不推荐,基于内存,无法持久化)
  4. 时间轮(不推荐,基于内存,无法持久化)
  5. kafka(MQ 方案不推荐,大量无效调度)
  6. RocketMQ延迟消息(MQ 方案不推荐,大量无效调度)
  7. RabbitMQ死信队列(MQ 方案不推荐,大量无效调度)
  8. RabbitMQ插件(MQ 方案不推荐,大量无效调度)
  9. Redis过期监听(不推荐,容易丢消息)
  10. Redis的ZSet(不推荐,可能会重复消费)
  11. Redisson(推荐,可以用)

实现的复杂度上(包含用到的框架的依赖及部署):

Redisson > RabbitMQ插件 > RabbitMQ死信队列 > RocketMQ延迟消息 ≈ Redis的zset > Redis过期监听 ≈ kafka时间轮 > 定时任务 > Netty的时间轮 > JDK自带的DelayQueue > 被动关闭

不同的场景中也适合不同的方案:

  • 自己玩玩:被动关闭
  • 单体应用,业务量不大:Netty的时间轮、JDK自带的DelayQueue、定时任务
  • 分布式应用,业务量不大:Redis过期监听、RabbitMQ死信队列、Redis的zset、定时任务
  • 分布式应用,业务量大、并发高:Redisson、RabbitMQ插件、kafka时间轮、RocketMQ延迟消息、定时任务
  • 业务量特别大:定时任务

总体考虑的话,考虑到成本,方案完整性、以及方案的复杂度,还有用到的第三方框架的流行度来说,个人比较建议优先考虑定时任务、Redisson+Redis、RabbitMQ插件、RocketMQ延迟消息等方案。

但是,如果考虑到订单到期关闭的业务特点,在订单量特别大的时候,MQ其实并不适合。

一、被动关闭

在解决这类问题的时候,有一种比较简单的方式,那就是通过业务上的被动方式来进行关单操作。

简单点说,就是订单创建好了之后。我们系统上不做主动关单,什么时候用户来访问这个订单了,再去判断时间是不是超过了过期时间,如果过了时间那就进行关单操作,然后再提示用户。

这种做法是最简单的,基本不需要开发定时关闭的功能,但是他的缺点也很明显,那就是如果用户一直不来查看这个订单,那么就会有很多脏数据冗余在数据库中一直无法被关单。

还有一个缺点,那就是需要在用户的查询过程中进行写的操作,一般写操作都会比读操作耗时更长,而且有失败的可能,一旦关单失败了,就会导致系统处理起来比较复杂。

所以,这种方案只适用于自己学习的时候用,任何商业网站中都不建议使用这种方式来实现订单关闭的功能。

二、定时任务

定时任务关闭订单,这是很容易想到的一种方案。

具体实现细节就是我们通过一些调度平台来实现定时执行任务,任务就是去扫描所有到期的订单,然后执行关单动作。

这个方案的优点也是比较简单,实现起来很容易,基于Timer、ScheduledThreadPoolExecutor、或者像xxl-job这类调度框架都能实现,但是有以下几个问题:

  1. 时间不精准。一般定时任务基于固定的频率、按照时间定时执行的,那么就可能会发生很多订单已经到了超时时间,但是定时任务的调度时间还没到,那么会导致这些订单的实际关闭时间要比应该关闭的时间晚一些。
  2. 无法处理大订单量。定时任务的方式是会把本来比较分散的关闭时间集中到任务调度的那一段时间,如果订单量比较大的话,那么就可能导致任务执行时间很长,整个任务的时间越长,订单被扫描到时间可能就很晚,那么就会导致关闭时间更晚。
  3. 对数据库造成压力。定时任务集中扫表,这会使数据库IO在短时间内被大量占用和消耗,如果没有做好隔离,并且业务量比较大的话,就会影响到底线上的正常业务。
  4. 分库分表问题。订单系统,一旦订单量大就可能会考虑分库分表,在分库分表中进行全表扫描,这是一个极不推荐的方案。

三、JDK自带的DelayQueue

有这样一种方案,他不需要借助任何外部的资源,直接基于应用自身就能实现,那就是基于JDK自带的DelayQueue来实现。

DelayQueue是一个无界的BlockingQueue,用于放置实现了Delayed接口的对象,其中的对象只能在其到期时才能从队列中取走。

基于延迟队列,是可以实现订单的延期关闭的,首先,在用户创建订单的时候,把订单加入到DelayQueue中,然后,还需要一个常驻任务不断的从队列中取出那些到了超时时间的订单,然后在把他们进行关单,之后再从队列中删除掉。

这个方案需要有一个线程,不断的从队列中取出需要关单的订单。一般在这个线程中需要加一个while(true)循环,这样才能确保任务不断的执行并且能够及时的取出超时订单。

使用DelayQueue实现超时关单的方案,实现起来简单,不须要依赖第三方的框架和类库,JDK原生就支持了。

当然这个方案也不是没有缺点的,首先,基于DelayQueue的话,需要把订单放进去,那如果订单量太大的话,可能会导致OOM的问题;另外,DelayQueue是基于JVM内存存的,一旦机器重启了,里面的数据就没有了。虽然我们可以配合数据库的持久化一起使用。而且现在很多时候都是集群部署的,那集群中的多个实例上的多个DelayQueue如何配合是一个很大的问题。

所以,基于JDK的DelayQueue方案只适合在单机场景、并且数据量不大的场景中使用,如果涉及到分布式场景,那还是不建议使用。

四、Netty的时间轮

还有一种方式,和上面我们提到的JDK自带的DelayQueue类似的方式,那就是基于时间轮实现。

为什么要有时间轮呢?主要是因为DelayQueue插入和删除操作的平均时间复杂度——O(nlog(n)),虽然已经挺好的了,但是时间轮的方案可以将插入和删除操作的时间复杂度都降为O(1)。

时间轮可以理解为一种环形结构,像钟表一样被分为多个slot。每个slot代表一个时间段,每个slot中可以存放多个任务,使用的是链表结构保存该时间段到期的所有任务。时间轮通过一个时针随着时间一个个slot转动,并执行slot中的所有到期任务。

基于Netty的HashedWheelTimer可以帮助我们快速的实现一个时间轮,这种方式和DelayQueue类似,缺点都是基于内存、集群扩展麻烦、内存有限制等等。

但是他相比DelayQueue的话,效率更高一些,任务触发的延迟更低。代码实现上面也更加精简。

所以,基于Netty的时间轮方案比基于JDK的DelayQueue效率更高,实现起来更简单,但是同样的,只适合在单机场景、并且数据量不大的场景中使用,如果涉及到分布式场景,那还是不建议使用。

五、Kafka的时间轮

既然基于Netty的时间轮存在一些问题,那么有没有其他的时间轮的实现呢?

真的有的,那就是Kafka的时间轮,Kafka内部有很多延时性的操作,如延时生产,延时拉取,延时数据删除等,这些延时功能由内部的延时操作管理器来做专门的处理,其底层是采用时间轮实现的。

而且,为了解决有一些时间跨度大的延时任务,Kafka还引入了层级时间轮,能更好控制时间粒度,可以应对更加复杂的定时任务处理场景;

Kafka中的时间轮的实现是TimingWheel类,位于kafka.utils.timer包中。基于Kafka的时间轮同样可以得到O(1)时间复杂度,性能上还是不错的。

基于Kafka的时间轮的实现方式,在实现方式上有点头疼,需要依赖kafka,但是他的稳定性和性能都要高一些,而且适合用在分布式场景中。

六、RocketMQ延迟消息

相比于Kafka来说,RocketMQ有一个强大的功能,那就是支持延迟消息。

延迟消息,当消息写入到Broker后,不会立刻被消费者消费,需要等待指定的时长后才可被消费处理的消息,称为延时消息。

有了延迟消息,我们就可以在订单创建好之后,发送一个延迟消息,比如20分钟取消订单,那就发一个延迟20分钟的延迟消息,然后在20分钟后,消息就会被消费者消费,消费者在接收到消息之后,去关单就行了。

但是,RocketMQ的延迟消息并不是支持任意时长的延迟的,它只支持: 1s 5s 10s 30s 1m 2m 3m 4m 5m 6 m 7m 8m 9m 10m 20m 30m 1h 2h这几个时长。(商业版支持任意时长)

可以看到,有了RocketMQ延迟消息之后,我们处理上就简单很多,只需要发消息,和接收消息就行了,系统之间完全解耦了。但是因为延迟消息的时长受到了限制,所以并不是很灵活。

如果我们业务上的关单时长刚好和RocketMQ延迟消息支持的时长相匹配的话,那么是可以基于RocketMQ延迟消息来实现的。否则,这种方式并不是最佳的。(但是在RocketMQ 5.0中新增了基于时间轮实现的定时消息,可以解决这个问题!)

七、RabbitMQ死信队列

延迟消息不仅在RocketMQ中支持,其实RabbitMQ中也是可以实现的,只不过其底层是基于死信队列实现的。

当RabbitMQ中的一条正常的消息,因为过了存活时间(TTL过期)、队列长度超限、被消费者拒绝等原因无法被消费时,就会变成Dead Message,即死信。

当一个消息变成死信之后,他就能被重新发送到死信队列中(其实是交换机-exchange)。

那么基于这样的机制,就可以实现延迟消息了。那就是我们给一个消息设定TTL,但是并不消费这个消息,等他过期,过期后就会进入到死信队列,然后我们再监听死信队列的消息消费就行了。

而且,RabbitMQ中的这个TTL是可以设置任意时长的,这就解决了RocketMQ的不灵活的问题。

但是,死信队列的实现方式存在一个问题,那就是可能造成队头阻塞,如果死信队列中的队头的消息一直无法消费成功,那么就会阻塞整个队列,这时候即使排在他后面的消息过期需要处理了,也会被一直阻塞。

基于RabbitMQ的死信队列,可以实现延迟消息,非常灵活的实现定时关单,并且借助RabbitMQ的集群扩展性,可以实现高可用,以及处理大并发。他的缺点第一是可能存在消息阻塞的问题,还有就是方案比较复杂,不仅要依赖RabbitMQ,而且还需要声明很多队列(exchange)出来,增加系统的复杂度。

八、RabbitMQ插件

其实,基于RabbitMQ的话,不用死信队列也能实现延迟消息,那就是基于rabbitmq_delayed_message_exchange插件,这种方案能够解决通过死信队列实现延迟消息出现的消息阻塞问题。但是该插件从RabbitMQ的3.6.12开始支持的,所以对版本有要求。

这个插件是官方出的,可以放心使用,安装并启用这个插件之后,就可以创建x-delayed-message类型的队列了。

前面我们提到的基于死信队列的方式,是消息先会投递到一个正常队列,在TTL过后进入死信队列。但是基于插件的这种方式,消息并不会立即进入队列,而是先把他们保留在一个基于Erlang开发的Mnesia数据库中,然后通过一个定时器去查询需要投递的消息,再把他们投递到x-delayed-message队列中。

基于RabbitMQ插件的方式可以实现延迟消息,并不存在消息阻塞的问题,但是是因为是基于插件的,而这个插件支持的最大延长时间是(2^32)-1 毫秒,大约49天,超过这个时间就会被立即消费。但是他基于RabbitMQ实现,所以在可用性、性能方面都很不错

九、Redis过期监听

很多用过Redis的人都知道,Redis有一个过期监听的功能。

在redis.conf中加入一条配置 notify-keyspace-events Ex 开启过期监听,然后再代码中实现一个KeyExpirationEventListener,就可以监听key的过期消息了。

这样就可以在接收到过期消息的时候,进行订单的关单操作。

这个方案不建议大家使用,是因为Redis官网上明确的说过,Redis并不保证Key在过期的时候就能被立即删除,更不保证这个消息能被立即发出。所以,消息延迟是必然存在的,随着数据量越大延迟越长,延迟个几分钟都是常事儿。

而且,在Redis 5.0之前,这个消息是通过PUB/SUB模式发出的,他不做持久化,至于你有没有接到,有没有消费成功,他不管。也就是说,如果发消息的时候,你的客户端挂了,之后再恢复的话,这个消息你就彻底丢失了。 (在Redis 5.0之后,因为引入了Stream,是可以用来做延迟消息队列的。)

十、Redis的Zset

虽然基于Redis过期监听的方案并不完美,但是并不是Redis实现关单功能就不完美了,还有其他的方案。

我们可以借助Redis中的有序集合——zset来实现这个功能。

zset是一个有序集合,每一个元素(member)都关联了一个 score,可以通过 score 排序来取集合中的值。

我们将订单超时时间的时间戳(下单时间+超时时长)与订单号分别设置为 score 和 member。这样redis会对 zset按照score延时时间进行排序。然后我们再开启redis扫描任务,获取“当前时间 > score”的延时任务,扫描到之后取出订单号,然后查询到订单进行关单操作即可。

使用redis zset来实现订单关闭的功能的优点是可以借助redis的持久化、高可用机制。避免数据丢失。但是这个方案也有缺点,那就是在高并发场景中,有可能有多个消费者同时获取到同一个订单号,一般采用加分布式锁解决,但是这样做也会降低吞吐量。

但是,在大多数业务场景下,如果幂等性做得好的,多个消费者取到同一个订单号也无妨。

十一、Redisson

上面这种方案看上去还不错,但是需要我们自己基于zset这种数据结构编写代码,那么有没有什么更加友好的方式?

有的,那就是基于Redisson。

Redisson是一个在Redis的基础上实现的框架,它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务。

Redisson中定义了分布式延迟队列RDelayedQueue,这是一种基于我们前面介绍过的zset结构实现的延时队列,它允许以指定的延迟时长将元素放到目标队列中。

其实就是zset的基础上增加了一个基于内存的延迟队列。当我们添加一个数据到延迟队列的时候,redis会把数据+超时时间放zset中,并且起一个延时任务,当任务到期的时候,再去zset中把数据取出来,返回给客户端使用。

基于Redisson的实现方式,是可以解决基于zset方案中的并发重复问题的,而且还实现方式也比较简单,稳定性、性能都比较高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2058656.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

win/mac数字资产管理软件Adobe Bridge (BR)软件下载安装

目录 一、Adobe BR软件介绍 1.1 软件概述 1.2 主要功能 1.3 系统要求 二、Adobe BR安装步骤 2.1 下载软件 2.2 安装前准备 2.3 安装过程 三、Adobe BR使用教程 3.1 基础操作 3.1.1 浏览与预览 3.1.2 搜索与筛选 3.1.3 批量操作 3.2 进阶功能 3.2.1 元数据管理 …

鸿蒙OS高级应用开发例题

44项目需要同时进行应用和元服务的开发,并针对当前项目工程中的代码可以分别构建出应用和元服务的包,如何在DevEco Studio中设置不同的构建配置,达成这个目的 A. 在模块级别buld-pronlejson5定义两个target;将两个target的bundleType分别设置…

8.20模拟赛题解

简单点评一下 整体上来看 ,A题拿满分的同学可能占一半吧 ,这个数据其实是不太理想的 ,说明同学们对于思维模拟题还是不熟练,没抓住题目要分析的本质。 B题显然是保证有解的,有解的情况下问最优解,说明翻到满…

动力电池系统面向开发的测试——电池阻抗特性测试(下)

接动力电池系统面向开发的测试——开路电压测试(上)本文主要围绕BMS设计中的等效电路模型第二大动态特性参数——阻抗特性及测试内容来展开分享。 阻抗特性测试方法: 方案1:直流脉冲测试 前面在分享功率评估内容的时候&#xf…

【正点原子K210连载】第三十二章 音频FFT实验 摘自【正点原子】DNK210使用指南-CanMV版指南

第三十二章 音频FFT实验 本章将介绍CanMV下FFT的应用,通过将时域采集到的音频数据通过FFT为频域。通过本章的学习,读者将学习到CanMV下控制FFT加速器进行FFT的使用。 本章分为如下几个小节: 32.1 maix.FFT模块介绍 32.2 硬件设计 32.3 程序设…

How can OpenAI Gym‘s visualizations work within Docker?

题意:OpenAI Gym 的可视化功能如何在 Docker 中运行? 问题背景: Id like to get OpenAI Gym working with the rendered OpenGL visualizations within a docker container. 我想在 Docker 容器中让 OpenAI Gym 与渲染的 OpenGL 可视化一起…

数据通信基础

信道特性 信道带宽 W 模拟信道:WF max - F min (信道最大频率减去最小频率,单位Hz) 数字信道:数字信道是离散信道,带宽为信道能够达到的最大数据传输速率,单位bit/s 奈奎斯定理(理…

IOy系列BL196MQTT远程IO模块智能农业灌溉水质监测

随着农业科技的进步和智能农业的发展,传统的灌溉和水质管理方式正逐渐被更为高效和智能的解决方案所取代。在智能农业系统中,水质监测作为灌溉管理的关键环节,对保障作物健康和提高水资源利用效率具有重要作用。 IOy系列BL196 MQTT远程IO模块…

第七届机械、控制与计算机工程国际学术会议(ICMCCE2024)

第七届机械、控制与计算机工程国际学术会议定于2024年10月25日至27日在中国杭州召开。本届会议由巢湖学院主办,主要围绕“机械”、“控制”与“计算机工程”等研究领域展开讨论。旨在为机械、控制与计算机工程方面的专家学者及企业发展人提供一个分享研究成果、讨论…

iML6602是一款60W立体声Class-D音频功率放大器集成电路

音频放大器是在产生声音的输出元件上重建输入的音频信号的设备,其重建的信号音量和功率级都要理想:如实、有效且失真低。音频范围为约20Hz~20000Hz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要…

Flink常见数据源使用教程(DataStream API)

前言 一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几部分构成,如下图所示: 获取执行环境(execution environment)读取数据源(source)定义基于数据的转换操作(transformations)定义计算结果的输出位置(sink)触发程序执行(exec…

深度deepin v23系统也能玩《黑神话:悟空》 8GB内存、GTX 1660 Ti丝滑流畅

首款国产现象级3A游戏《黑神话:悟空》正式上线,有玩家将其比喻为“村里这么多年终于出个大学生了”…那么,在国产操作系统上可以畅玩《黑神话:悟空》吗?答案是肯定的。深度系统最新版本deepin v23就展示了一番。 当然&…

最短路径树,CF 1076D - Edge Deletion

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1076D - Edge Deletion 二、解题报告 1、思路分析 考虑dijkstra实际上是…

如何将MySQL迁移到TiDB,完成无缝业务切换?

当 MySQL 数据库的单表数据量达到了亿级,会发生什么? 这个现象表示公司的业务上了一个台阶,随着数据量的增加,公司规模也进一步扩大了,是非常喜人的一个改变 ,然而随之而来的其他变化,就没那么…

【踩坑】如何解锁微软“已暂时锁定你的帐户”

登录微软账号时候,提示:有人在使用此帐户时输入错误密码的次数过多。为了保证帐户安全,我们已暂时锁定你的帐户,请稍后再试。 进入以下网站重置密码即可: https://account.live.com/ResetPassword.aspx?mktzh-CN 登录…

什么是企业高性能web服务器,这一篇就够了

一.Web 服务基础介绍 正常情况下的单次web服务访问流程: 1.1 互联网发展历程回顾 1993年3月2日,中国科学院高能物理研究所租用AT&T公司的国际卫星信道建立的接入美国SLAC国家实 验室的64K专线正式开通,成为我国连入Internet的第一根专…

IMU用于受伤颈椎的角度监测

最近,一项由泰国科研团队开展的研究,创新性地应用了惯性测量单元(IMU)传感器,以评估和比较两种不同的颈椎固定技术——传统脊柱固定(TSI)和脊柱运动限制(SMR)——在院前急…

MacBook M系列芯片基于docker安装Oracle 19c

网上找到的镜像,如:doctorkirk/oracle-19c、registry.cn-hangzhou.aliyuncs.com/zhuyijun/oracle:19c,都是linux/amd64版本,M系列芯片一般也是支持linux/amd64的镜像运行的,但是oracle的这两个镜像运行不起来&#xff…

Python入门级 [ 继上篇 进阶版 持续更新中哞哞哞!!! ]例题较多

本文主要结合例题介绍了数据集合中的元组、字符串、以及字符串的查找 替换 格式化等基础函数。下期是序列 集合 字典,这几种数据集合在Python中也是蛮重要的,对于新手比较友好。 本文例题大多来自哔站up主鱼C-小甲鱼【Python教程】的练习过程&#xff0c…

第一批AI原住民开始变现:9岁小学生,用大模型写书赚1个w

前言 当人们正在观望,AI什么时候抢走自己的饭碗时,北京一名9岁的小学生在AI的帮助下写了一本小说,并赚到了2万元的版税。 这件看似不可思议的事,他是如何做到的?此外,他还带来一个启发:面对AI时…