LLM大模型技术实战:一文讲透专补大模型短板的RAG

news2025/2/3 18:00:57

大型语言模型(LLMs)已经成为我们生活和工作的一部分,它们以惊人的多功能性和智能化改变了我们与信息的互动方式。但是当我们将大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因:

  • 知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。

  • 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。而这种幻觉问题的区分是比较困难的,因为它要求使用者自身具备相应领域的知识。

  • 数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。RAG 的出现无疑是人工智能研究领域最激动人心的进展之一。

本篇综述将带你全面了解 RAG,深入探讨其核心范式、关键技术及未来趋势,为读者和实践者提供对大型模型以及 RAG 的深入和系统的认识,同时阐述检索增强技术的最新进展和关键挑战。

RAG 是什么?

图 1 RAG 技术在 QA 问题中的案例

一个典型的 RAG 案例如图所示。如果我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。在这个例子中,它获取了一系列与询问相关的新闻文章。这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应。

RAG 技术范式发展

RAG 的概念首次于 2020 年被提出,随后进入高速发展。RAG 技术的演进历程如图所示,相关研究进展可以明确地划分为数个关键阶段。在早期的预训练阶段,研究的焦点集中在如何通过预训练模型注入额外的知识,以此增强语言模型的能力。随着 ChatGPT 的面世,对于运用大型模型进行深层次上下文学习的兴趣激增,这推动了 RAG 技术在研究领域的快速发展。随着 LLMs 的潜力被进一步开发,旨在提升模型的可控性并满足不断演变的需求,RAG 的研究逐渐聚焦于增强推理能力,并且也探索了在微调过程中的各种改进方法。特别是随着 GPT-4 的发布,RAG 技术经历了一次深刻的变革。研究重点开始转移至一种新的融合 RAG 和微调策略的方法,并且持续关注对预训练方法的优化。

图 2 RAG 技术发展的科技树

在 RAG 的技术发展过程中,我们从技术范式角度,将其总结成如下几个阶段:

1.朴素(Naive RAG)

前文案例中展示了经典的 RAG 流程,也被称为 Naive RAG。主要包括包括三个基本步骤:

1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。3. 生成 — 以检索到的上下文为条件,生成问题的回答。

2.进阶的RAG(Advanced RAG)

Naive RAG 在检索质量、响应生成质量以及增强过程中存在多个挑战。Advanced RAG 范式随后被提出,并在数据索引、检索前和检索后都进行了额外处理。通过更精细的数据清洗、设计文档结构和添加元数据等方法提升文本的一致性、准确性和检索效率。在检索前阶段则可以使用问题的重写、路由和扩充等方式对齐问题和文档块之间的语义差异。在检索后阶段则可以通过将检索出来的文档库进行重排序避免 “Lost in the Middle ” 现象的发生。或是通过上下文筛选与压缩的方式缩短窗口长度。

3.模块化RAG(Modular RAG)

随着 RAG 技术的进一步发展和演变,新的技术突破了传统的 Naive RAG 检索 — 生成框架,基于此我们提出模块化 RAG 的概念。在结构上它更加自由的和灵活,引入了更多的具体功能模块,例如查询搜索引擎、融合多个回答。技术上将检索与微调、强化学习等技术融合。流程上也对 RAG 模块之间进行设计和编排,出现了多种的 RAG 模式。然而,模块化 RAG 并不是突然出现的,三个范式之间是继承与发展的关系。Advanced RAG 是 Modular RAG 的一种特例形式,而 Naive RAG 则是 Advanced RAG 的一种特例。

图 3 RAG 范式对比图

如何进行检索增强?

RAG 系统中主要包含三个核心部分,分别是 “检索”,“增强” 和 “生成”。正好也对应 RAG 中的三个首字母。想要构建一个好的 RAG 系统,增强部分是核心,则需要考虑三个关键问题:检索什么?什么时候检索?怎么用检索的内容?

检索增强的阶段:在预训练、微调和推理三个阶段中都可以进行检索增强,这决定了外部知识参数化程度的高低,对应所需要的计算资源也不同。

检索增强的数据源:增强可以采用多种形式的数据,包括非结构化的文本数据,如文本段落、短语或单个词汇。此外,也可以利用结构化数据,比如带有索引的文档、三元组数据或子图。另一种途径是不依赖外部信息源,而是充分发挥 LLMs 的内在能力,从模型自身生成的内容中检索。

检索增强的过程:最初的检索是一次性过程,在 RAG 发展过程中逐渐出现了迭代检索、递归检索以及交由 LLMs 自行判断检索时刻的自适应检索方法。

图 4 RAG 核心组件的分类体系

RAG 和微调应该如何选择?

除了 RAG,LLMs 主要优化手段还包括了提示工程 (Prompt Engineering)、微调 (Fine-tuning,FT)。他们都有自己独特的特点。根据对外部知识的依赖性和模型调整要求上的不同,各自有适合的场景。

RAG 就像给模型一本教科书,用于定制的信息检索,非常适合特定的查询。另一方面,FT 就像一个学生随着时间的推移内化知识,更适合模仿特定的结构、风格或格式。FT 可以通过增强基础模型知识、调整输出和教授复杂指令来提高模型的性能和效率。然而,它不那么擅长整合新知识或快速迭代新的用例。RAG 和FT,并不是相互排斥的,它们可以是互补的,联合使用可能会产生最佳性能。

图 5 RAG 与其他大模型微调技术对比

RAG应用流程

完整的RAG应用流程主要包含两个阶段:

  • 数据准备阶段:数据提取——>文本分割——>向量化(embedding)——>数据入库

  • 应用阶段:用户提问——>数据检索(召回)——>注入Prompt——>LLM生成答案

下面我们详细介绍一下各环节的技术细节和注意事项:

数据准备阶段

数据准备一般是一个离线的过程,主要是将私域数据向量化后构建索引并存入数据库的过程。主要包括:数据提取、文本分割、向量化、数据入库等环节。

数据准备

  • 数据提取

  • 数据加载:包括多格式数据加载、不同数据源获取等,根据数据自身情况,将数据处理为同一个范式。

  • 数据处理:包括数据过滤、压缩、格式化等。

  • 元数据获取:提取数据中关键信息,例如文件名、Title、时间等 。

  • 文本分割

    文本分割主要考虑两个因素:1)embedding模型的Tokens限制情况;2)语义完整性对整体的检索效果的影响。一些常见的文本分割方式如下:

  • 句分割:以”句”的粒度进行切分,保留一个句子的完整语义。常见切分符包括:句号、感叹号、问号、换行符等。

  • 固定长度分割:根据embedding模型的token长度限制,将文本分割为固定长度(例如256/512个tokens),这种切分方式会损失很多语义信息,一般通过在头尾增加一定冗余量来缓解。

  • 向量化(embedding)

向量化是一个将文本数据转化为向量矩阵的过程,该过程会直接影响到后续检索的效果。目前常见的embedding模型如表中所示,这些embedding模型基本能满足大部分需求,但对于特殊场景(例如涉及一些罕见专有词或字等)或者想进一步优化效果,则可以选择开源Embedding模型微调或直接训练适合自己场景的Embedding模型。

模型名称描述获取地址
ChatGPT-EmbeddingChatGPT-Embedding由OpenAI公司提供,以接口形式调用。https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
ERNIE-Embedding V1ERNIE-Embedding V1由百度公司提供,依赖于文心大模型能力,以接口形式调用。https://cloud.baidu.com/doc/WENXINWORKSHOP/s/alj562vvu
M3EM3E是一款功能强大的开源Embedding模型,包含m3e-small、m3e-base、m3e-large等多个版本,支持微调和本地部署。https://huggingface.co/moka-ai/m3e-base
BGEBGE由北京智源人工智能研究院发布,同样是一款功能强大的开源Embedding模型,包含了支持中文和英文的多个版本,同样支持微调和本地部署。https://huggingface.co/BAAI/bge-base-en-v1.5
  • 数据入库:

数据向量化后构建索引,并写入数据库的过程可以概述为数据入库过程,适用于RAG场景的数据库包括:FAISS、Chromadb、ES、milvus等。一般可以根据业务场景、硬件、性能需求等多因素综合考虑,选择合适的数据库。

应用阶段:

在应用阶段,我们根据用户的提问,通过高效的检索方法,召回与提问最相关的知识,并融入Prompt;大模型参考当前提问和相关知识,生成相应的答案。关键环节包括:数据检索、注入Prompt等。

数据检索

  • 数据检索

常见的数据检索方法包括:相似性检索、全文检索等,根据检索效果,一般可以选择多种检索方式融合,提升召回率。

  • 相似性检索:即计算查询向量与所有存储向量的相似性得分,返回得分高的记录。常见的相似性计算方法包括:余弦相似性、欧氏距离、曼哈顿距离等。

  • 全文检索:全文检索是一种比较经典的检索方式,在数据存入时,通过关键词构建倒排索引;在检索时,通过关键词进行全文检索,找到对应的记录。

  • 注入Prompt

LLM生成

Prompt作为大模型的直接输入,是影响模型输出准确率的关键因素之一。在RAG场景中,Prompt一般包括任务描述、背景知识(检索得到)、任务指令(一般是用户提问)等,根据任务场景和大模型性能,也可以在Prompt中适当加入其他指令优化大模型的输出。一个简单知识问答场景的Prompt如下所示:

【任务描述】  
假如你是一个专业的客服机器人,请参考【背景知识】,回  
【背景知识】  
{content} // 数据检索得到的相关文本  
【问题】  
石头扫地机器人P10的续航时间是多久?

Prompt的设计只有方法、没有语法,比较依赖于个人经验,在实际应用过程中,往往需要根据大模型的实际输出进行针对性的Prompt调优。

如何评价 RAG?

RAG 的评估方法多样,主要包括三个质量评分:上下文相关性、答案忠实性和答案相关性。此外,评估还涉及四个关键能力:噪声鲁棒性、拒答能力、信息整合和反事实鲁棒性。这些评估维度结合了传统量化指标和针对 RAG 特性的专门评估标准,尽管这些标准尚未统一。

在评估框架方面,存在如 RGB 和 RECALL 这样的基准测试,以及 RAGAS、ARES 和 TruLens 等自动化评估工具,它们有助于全面衡量 RAG 模型的表现。表中汇总了如何将传统量化指标应用于 RAG 评估以及各种 RAG 评估框架的评估内容,包括评估的对象、维度和指标,为深入理解 RAG 模型的性能和潜在应用提供了宝贵信息。

未来 RAG 还有哪些发展前景?

RAG 的发展方兴未艾,还有哪些问题值得进一步去研究?我们从三个方面进行展望:

1.RAG 的垂直优化

垂直优化旨在进一步解决 RAG 当前面临的挑战;长下文长度。检索内容过多,超过窗口限制怎么办 ?如果 LLMs 的上下文窗口不再受限制,RAG 应该如何改进?鲁棒性。检索到错误内容怎么处理?怎么对检索出来内容进行过滤和验证?怎么提高模型抗毒、抗噪声的能力。与微调协同。如何同时发挥 RAG 和 FT 的效果,两者怎么协同,怎么组织,是串行、交替还是端到端?Scaling-Law:RAG 模型是否满足 Scaling Law?RAG 是否会,或是在什么场景下会出现 Inverse Scaling Law 的现象?LLM 的角色。LLMs 可以用于检索(用 LLMs 的生成代替检索或检索 LLMs 记忆)、用于生成、用于评估。如何进一步挖掘 LLMs 在 RAG 中的潜力?工程实践。如何降低超大规模语料的检索时延?如何保证检索出来内容不被大模型泄露?

2. RAG 的多模态的拓展

如何将 RAG 不断发展的技术和思想拓展到图片、音频、视频或代码等其他模态的数据中?一方面可以增强单一模态的任务,另一方面可以通过 RAG 的思想将多模态进行融合。

3. RAG 的生态

RAG 的应用已经不仅仅局限于问答系统,其影响力正在扩展到更多领域。现在,推荐系统、信息抽取和报告生成等多种任务都开始受益于 RAG 技术的应用。与此同时,RAG 技术栈也在井喷。除了已知的 Langchain 和 LlamaIndex 等工具,市场上涌现出更多针对性的 RAG 工具,例如:用途定制化,满足更加聚焦场景的需求;使用简易化,进一步降低上手门槛的;功能专业化,逐渐面向生产环境。

图 6 RAG 的生态系统概览

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2057268.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型时代,云南白药如何成为一家AI医药企业?|产业AI案例

作者|斗斗 编辑|皮爷 出品|产业家 中医药大模型发布;英伟达成立AI制药部门,发力生物制药领域;赛诺菲与百图生科达成战略合作,共同开发用于生物治疗药物发现的领先模型;京东发布医疗大模型;百度“产业级”…

机器学习--特征工程常用API

1. DictVectorizer - 字典特征提取 DictVectorizer 是一个用于将字典&#xff08;如Python中的字典对象&#xff09;转换为稀疏矩阵的工具&#xff0c;常用于处理类别型特征。 DictVectorizer(sparseTrue, sortTrue, dtype<class numpy.float64>)参数&#xff1a; spar…

ggplot阶截断坐标轴-gggap

目录 gggap包安装 功能查询 简单版使用代码 复杂版使用代码 gggap包安装 CRAN: Package gggap (-project.org) 手动下载安装 功能查询 > ?gggap > ?gggapDefine Segments in y-Axis for ggplot2 Description Easy-to-define segments in y-axis for ggplot2. …

使用Clion开发STM32串口调试遇到问题之重定向printf不显示(已解决问题)

为什么要使用重定向printf C语言中经常使用printf来输出调试信息&#xff0c;打印到屏幕。由于在单片机中没有屏幕&#xff0c;但是我们可以重定向printf&#xff0c;把数据打印到串口&#xff0c;从而在电脑端接收调试信息。这是除了debug外&#xff0c;另外一个非常有效的调…

根据前序遍历和中序遍历生成二叉树,并层序遍历输出二叉树

二叉树 前序遍历&#xff1a;ABDFCEGH 中序遍历&#xff1a;BFDAGEHC 演示 代码&#xff1a; package com.fdw.algorithm.hhh;import com.fdw.algorithm.structure.TreeNode;import java.util.LinkedList; import java.util.Queue;/*** description:* author: ThatMonth* cr…

Javaweb学习之JavaScript输出与字符串(二)

前情回顾 Javaweb学习之JavaScript&#xff08;一&#xff09;-CSDN博客 学习资源 w3school 在线教程 本期介绍 输出语句 在JavaScript中&#xff0c;有几种方式可以输出信息到控制台&#xff08;console&#xff09;、浏览器窗口&#xff08;window&#xff09;或其他地方。…

谷粒商城实战笔记-220~224-商城业务-微博认证服务-OAuth2.0

文章目录 一&#xff0c;220-商城业务-认证服务-OAuth2.0简介二&#xff0c;221-商城业务-认证服务-微博登录测试1&#xff0c;创建微博应用2&#xff0c;应用配置重定向url3&#xff0c;修改商城登录页面4&#xff0c;点击微博登录5&#xff0c;点击授权 三&#xff0c;222-商…

[译]开发者与熵的博弈

原文&#xff1a;https://itnext.io/entropy-in-software-development-77ed9110ef28 翻译&#xff1a;我的文章翻译智能体 文章润色智能体 文章转脑图智能体 人工校对 文章脉络&#xff1a; 文章概括&#xff1a; 文章通过热力学的视角&#xff0c;深入探讨了软件开发中的复…

GitHub的未来:在微软领导下保持独立与AI发展的平衡

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

企业高性能web服务器----nginx详细知识点+实验

知识点 一、Web 服务介绍 Apache Nginx 1、Apache 经典的 Web 服务端 Apache 起初由美国的伊利诺伊大学香槟分校的国家超级计算机应用中心开发 目前经历了两大版本分别是 1.X 和 2.X 其可以通过编译安装实现特定的功能 2、Apache的三种模型 Apache prefork 模型 预…

4000元亮度最高的投影仪:当贝X5S 3300CVIA流明超高亮度白天也清晰

你购买投影仪的时候一般预算多少&#xff1f;目前市面上的投影仪价位有几百也有上万&#xff0c;品牌和类型都比较多&#xff0c;买投影前比较关注哪些投影仪参数&#xff1f;最近有朋友向我咨询购买投影仪的事项&#xff0c;预算在4000左右&#xff0c;问问4000元哪款投影仪哪…

Ollama Desktop

一、简介 Ollama Desktop是基于Ollama引擎的一个桌面应用解决方案&#xff0c;用于在macOS、Windows和Linux操作系统上运行和管理Ollama模型的GUI工具。 Ollama Desktop提供了丰富的功能&#xff0c;包括但不限于&#xff1a; 可视化的管理界面&#xff1a;用户可以通过图形…

推荐3款免费强大OCR神器,工作必备,总有一款适合你,必须收藏

ShareX ShareX是一款功能强大且免费的开源屏幕捕捉和录屏工具&#xff0c;主要用于Windows操作系统。它不仅可以捕捉任何屏幕区域&#xff0c;还可以录制视频、拍摄屏幕截图&#xff0c;并将其上传到各种在线平台。ShareX的功能非常全面&#xff0c;包括截图、录屏、加水印、裁…

低代码平台:效率与创新的双重引擎

低代码开发在软件开发领域是一种越来越流行的趋势&#xff0c;这是有充分理由的。低代码使专业开发人员和非开发人员能够构建更易于集成、修改和升级的复杂企业解决方案&#xff0c;使企业能够快速轻松地创建软件应用程序无需丰富的编码经验。低代码平台彻底改变了软件开发方式…

LLM应用实战: 产业治理多标签分类

1. 背景 许久未见&#xff0c;甚是想念~ 近期本qiang~换了工作&#xff0c;处于新业务适应期&#xff0c;因此文章有一段时间未更新&#xff0c;理解万岁&#xff01; 现在正在着手的工作是产业治理方面&#xff0c;主要负责其中一个功能模块&#xff0c;即按照产业治理标准体…

巡检机器人有哪些功能和应用场景

随着科技的飞速发展&#xff0c;巡检机器人作为智能化、自动化的重要代表&#xff0c;已经在多个领域展现出其独特的优势。从工业生产到特殊环境监测&#xff0c;巡检机器人以其高效、准确和安全的特性&#xff0c;逐渐取代了传统的人工巡检方式&#xff0c;极大地提升了巡检效…

spring boot(学习笔记第十八课)

spring boot(学习笔记第十八课) Spring boot的定时任务和Quartz 学习内容&#xff1a; Spring boot的定时任务Spring boot的Quartz 1. Spring boot的定时任务 定义定时任务 加入必要的依赖 <dependency><groupId>org.springframework.boot</groupId&g…

STM32 —— TIM(基本定时器)详解_stm32的tim

STM32 —— TIM&#xff08;基本定时器&#xff09;详解_stm32的tim 一、定时器简介 STM32F1 系列中&#xff0c;除了互联型的产品&#xff0c;共有 8 个定时器&#xff0c;分为基本定时器&#xff0c;通用定时器和高级定时器。基本定时器 TIM6 和 TIM7 是一个 16 位的只能向…

ID3算法详解:构建决策树的利器

目录 引言 ID3算法概述 算法基础 信息熵 ​编辑 信息增益 ID3算法步骤 决策树 概念: 核心&#xff1a; 节点 1. 根节点 2. 非叶子节点 3. 叶子节点 引言 在机器学习领域&#xff0c;决策树是一种非常流行的分类和回归方法。其中&#xff0c;ID3算法作为决策树算法…

干货分享 | TSMaster—RP1210模块使用指南

RP1210是由技术和维护委员会&#xff08;TMC&#xff09;编写的一种建议性实践。RP1210用于对重型车辆射频相关的&#xff08;主要针对&#xff09;电子控制单元&#xff08;ECU&#xff09;进行二次编程和分析。本文主要针对TSMaster—RP1210模块的操作进行详细介绍。 本文关…