EmguCV学习笔记 C# 5.2 仿射变换

news2024/9/21 4:40:09

 版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。

教程VB.net版本请访问:EmguCV学习笔记 VB.Net 目录-CSDN博客

教程C#版本请访问:EmguCV学习笔记 C# 目录-CSDN博客

笔者的博客网址:https://blog.csdn.net/uruseibest

教程配套文件及相关说明以及如何获得pdf教程和代码,请移步:EmguCV学习笔记

学习VB.Net知识,请移步: vb.net 教程 目录_vb中如何用datagridview-CSDN博客

 学习C#知识,请移步:C# 教程 目录_c#教程目录-CSDN博客

5.2 仿射变换

仿射变换是一种保持直线在变换前后仍然保持直线的线性变换,可以用来对图像进行旋转、平移、缩放、错切等操作。通过仿射变换,可以对图像进行各种形式的几何变换,从而实现图像的校正、纠正畸变、图像拼接等操作。

仿射变换是通过三个点的变化来定位,读者可以想象把矩形左上、右上、左下,这三个顶点来做变化,剩下的右下顶点与左下、右上的边始终保持与其他两条边平行。

在使用Emgu.CV进行仿射变换时,需要注意选择合适的关键点以及目标图像的大小,以确保变换效果符合预期。此外,还可以使用其他函数和方法来进一步对变换后的图像进行处理和优化,如图像增强、边缘检测等。

5.2.1 warpAffine   

在Emgu.CV中,仿射变换可以通过CvInvoke的WarpAffine方法来实现。该方法接受源图像、变换矩阵(2x3的矩阵)和目标图像的大小作为参数,可以将源图像根据变换矩阵进行仿射变换,并将结果存储在目标图像中。

通常仿射变换的步骤如下:

1. 创建一个2×3的仿射变换矩阵,可以使用CvInvoke.GetAffineTransform方法(参看第5.2.2节)来创建,该方法接受源图像中的三个关键点和目标图像中的三个关键点作为参数,返回一个2×3的仿射变换矩阵。

2. 使用CvInvoke.WarpAffine方法进行仿射变换。该方法接受源图像、变换矩阵和目标图像的大小作为参数,可以将源图像根据变换矩阵进行仿射变换,并将结果存储在目标图像中。

WarpAffine方法的声明如下:

public static void WarpAffine(

           IInputArray src,

                    IOutputArray dst,

                    IInputArray mapMatrix,

                    Size dsize,

                    Inter interMethod = Inter.Linear,

                    Warp warpMethod = Warp.Default,

                    BorderType borderMode = BorderType.Constant,

           MCvScalar borderValue = default

)

主要参数说明:

  1. mapMatrix:仿射变换矩阵。
  2. dsize:输出图像的尺寸,需要考虑仿射变换后,图像超出原尺寸。
  3. borderValue:填充颜色,表示在变换过程中,如果目标图像超出原始图像范围,用于填充的颜色。默认是黑色填充。

在WarpAffine函数的参数中,仿射变换矩阵mapMatrix用于定义图像的仿射变换操作。仿射变换矩阵是一个2x3的矩阵,其中包含了平移、旋转、缩放和剪切等变换的参数。

仿射变换矩阵的具体定义如下:

| a(0, 0)  a(0, 1)  a(0, 2) |

| a(1, 0)  a(1, 1)  a(1, 2) |

其中:

a(0, 0)和a(1, 1)表示图像的水平和垂直缩放系数,分别对应于x轴和y轴的缩放。当a(0, 0)和a(1, 1)的值为1时,表示不进行缩放。

a(0, 1)和a(1, 0)表示图像的剪切系数,分别对应于x轴和y轴的剪切。当a(0, 1)和a(1, 0)的值为0时,表示不进行剪切。

a(0, 2)和a(1, 2)表示图像的平移量,即图像在x轴和y轴上的平移距离。

通过修改仿射变换矩阵的参数,可以实现不同的图像变换效果。下面是一些常见的仿射变换操作:

1. 平移变换:

将图像向右平移dx个像素: [1.0, 0.0, dx, 0.0, 1.0, 0.0]

将图像向下平移dy个像素: [1.0, 0.0, 0.0, 0.0, 1.0, dy]

2. 旋转变换:

绕图像中心逆时针旋转theta弧度: [Math.Cos(theta), -Math.Sin(theta), 0.0, Math.Sin(theta), Math.Cos(theta), 0.0)]

这里是弧度,如果使用角度,请看下面的代码。

3. 缩放变换:

在x轴方向上缩放sx倍,y轴方向上缩放sy倍: [sx, 0.0, 0.0, 0.0, sy, 0.0]

4. 剪切变换:

在x轴方向上剪切tx个像素,y轴方向上剪切ty个像素:[1.0, tx, 0.0, ty, 1.0, 0.0]

【代码位置:frmChapter5】Button7_Click

        //WarpAffine仿射变换

        private void Button7_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("C:\\learnEmgucv\\lena.jpg", ImreadModes.Color);

            CvInvoke.Imshow("src", m);

            Matrix<Double> ma1 = new Matrix<Double>(2, 3);

            ma1[0, 0] = 1.0F;

            ma1[0, 1] = -0.5F;

            ma1[0, 2] = 20.0F;

            ma1[1, 0] = 0.5F;

            ma1[1, 1] = 0.5F;

            ma1[1, 2] = 0F;

            Mat dst1 = new Mat();

            CvInvoke.WarpAffine(m, dst1, ma1, new Size(m.Width * 1, m.Height * 1), Inter.Linear, Warp.Default, BorderType.Constant, new MCvScalar(255, 0, 0));

            CvInvoke.Imshow("dst1", dst1);

            //顺时针方向旋转30

            Single theta = 30.0F * (Single)Math.PI / 180;

            //仿射矩阵:

            Matrix<Double> ma2 = new Matrix<Double>(2, 3);

            ma2[0, 0] = Math.Cos(theta);

            ma2[0, 1] = -1 * Math.Sin(theta);

            ma2[0, 2] = 0F;

            ma2[1, 0] = Math.Sin(theta);

            ma2[1, 1] = Math.Cos(theta);

            ma2[1, 2] = 0F;

            Mat dst2 = new Mat();

            //仿射变换

            CvInvoke.WarpAffine(m, dst2, ma2, new Size(m.Width * 1, m.Height * 1));

            CvInvoke.Imshow("dst2", dst2);

        }

运行后如下图所示:

 

图5-7 仿射变换

5.2.2 GetAffineTransform    

在上一节的代码中使用的是自己填充的仿射变换矩阵,这个需要开发者手动计算矩阵的数据。而实际在EmguCV中,可以使用CvInvoke提供的GetAffineTransform方法来获取仿射变换矩阵。该方法只需要开发者提供三个点前后的变化即可,声明如下:

public static Mat GetAffineTransform(

           PointF[] src,

           PointF[] dest

)

参数说明:

  1. src:源图像中三个的坐标,类型为PointF[]。
  2. dest:目标图像中三个点的坐标,类型为PointF[]。

返回值:返回仿射变换矩阵,类型为Mat。

下面的代码,展示了如何使用 GetAffineTransform来获取仿射变换矩阵:

        '根据三点得到仿射变换矩阵

        PointF[] srcpoint=new PointF[3];

        srcpoint[0] = New PointF(0, 0);

        srcpoint[1] = New PointF(0, srcheight);

        srcpoint[2) = New PointF(srcwidth, 0);

        PointF[] dstpoint=new PointF[3];

        dstpoint[0] = New PointF(0, 0);

        dstpoint[1] = New PointF(srcwidth/2, srcheight/2);

        dstpoint[2] = New PointF(srcwidth/2, -srcheight/2);

        Mat rtm = new Mat();

    rtm = CvInvoke.GetAffineTransform(srcpoint, dstpoint);

上述代码中,srcpoint是源图像中的三个点,这里设置为了源图像的左上角、左下角和右上角。Dstpoint是目标图像的三个点,分别对应源图像中的三个点,与源图像三个点的对应关系:

源图像左上角位置不变。

源图像左下角移动到对应源图像中心点位置。

源图像右上角移动到对应源图像上方宽度一半、高度一半位置。

通过上述仿射变换得到的图像如下:

 

图5-8 仿射变换图像

上述代码中的点数组也可以更换为:

        PointF[] srcpoint=new PointF[3];

        srcpoint[0] = New PointF(0, 0);

        srcpoint[1] = New PointF(20, 0);

        srcpoint[2] = New PointF(0, 20);

        PointF[] dstpoint=new PointF[3];

        dstpoint[0] = New PointF(0, 0);

        dstpoint[1] = New PointF(10, -10);

    dstpoint[2] = New PointF(10, 10);

注意:上述替换只能是目标图像相对源图像左上角点(00)不变的情况,如果左上角点变换了,需要以实际为准。

【代码位置:frmChapter5】Button8_Click

        //仿射变换

        private void Button8_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("C:\\learnEmgucv\\lena.jpg", Emgu.CV.CvEnum.ImreadModes.Color);

            ImageBox1.Image = m;

            //根据三点得到仿射变换矩阵

            PointF[] srcpoint1=new PointF[3];

            srcpoint1[0] = new PointF(0, 0);

            srcpoint1[1] = new PointF(0, 20);

            srcpoint1[2] = new PointF(20, 0);

            PointF[] dstpoint1 = new PointF[3];

            dstpoint1[0] = new PointF(0, 0);

            dstpoint1[1] = new PointF(10, -10);

            dstpoint1[2] = new PointF(10, 10);

            Mat rtm1 = new Mat();

            //获得仿射变换矩阵

            rtm1 = CvInvoke.GetAffineTransform(srcpoint1, dstpoint1);

            Mat dst1 = new Mat();

            CvInvoke.WarpAffine(m, dst1, rtm1, new Size(m.Width, m.Height));

            ImageBox2.Image = dst1;

            //根据三点得到仿射变换矩阵

            PointF[] srcpoint2 = new PointF[3];

            srcpoint2[0] = new PointF(0, 0);

            srcpoint2[1] = new PointF(m.Width, 0);

            srcpoint2[2] = new PointF(0, m.Height);

            PointF[] dstpoint2= new PointF[3];

            dstpoint2[0] = new PointF(m.Width / 2, m.Height / 2);

            dstpoint2[1] = new PointF(m.Width, m.Height);

            dstpoint2[2] = new PointF(0, m.Height);

            Mat rtm2 = new Mat();

            //获得仿射变换矩阵

            rtm2 = CvInvoke.GetAffineTransform(srcpoint2, dstpoint2);

            Mat dst2 = new Mat();

            CvInvoke.WarpAffine(m, dst2, rtm2, new Size(m.Width, m.Height));

            ImageBox3.Image = dst2;

        }

运行后如下图所示:

 

图5-9 仿射变换后的图像

5.2.3 GetRotationMatrix2D

在EmguCV中还可以使用CvInvoke的GetRotationMatrix2D方法来获取旋转后的仿射变换矩阵。该方法声明如下:

public static void GetRotationMatrix2D(

           PointF center,

                    double angle,

                    double scale,

           IOutputArray mapMatrix

)

参数说明:

  1. center:旋转中心点坐标。
  2. angle:旋转角度。
  3. scale:缩放比例。
  4. mapMatrix:输出的仿射变换矩阵。

【代码位置:frmChapter5】Button9_Click

       //使用GetRotationMatrix2D进行仿射变换

        private void Button9_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("C:\\learnEmgucv\\lena.jpg", Emgu.CV.CvEnum.ImreadModes.Color);

            ImageBox1.Image = m;

            //得到仿射变换矩阵

            Mat rmm = new Mat();

            //图像中心点,30度,不缩放

            CvInvoke.GetRotationMatrix2D(new PointF(m.Width / 2, m.Height / 2), 30, 1, rmm);

            //仿射变换

            Mat dst = new Mat();

            CvInvoke.WarpAffine(m, dst, rmm, new Size(m.Width, m.Height));

            ImageBox2.Image = dst;

        }

运行后如下图所示:

 

图5-10 旋转后的图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2054850.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

七天.NET 8操作SQLite入门到实战详细教程(选型、开发、发布、部署)

教程简介 EasySQLite是一个七天.NET 8操作SQLite入门到实战详细教程&#xff0c;主要是对学校班级&#xff0c;学生信息进行管理维护&#xff08;包含选型、开发、发布、部署&#xff09;&#xff01; 什么是SQLite&#xff1f; SQLite 是一个软件库&#xff0c;实现了自给自…

【蓝牙协议栈】【BLE】精讲引用(包含)服务(Included service)

1.欢迎大家关注和订阅匠心之作&#xff0c;【精讲蓝牙协议栈】、【精讲BLE协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待&#xff01; 2. 精讲蓝牙协议栈&#xff08;Bluetooth Stack&#xff09;&#xff1a;SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OP…

【安全靶场】-DC-8

❤️博客主页&#xff1a; iknow181 &#x1f525;系列专栏&#xff1a; 网络安全、 Python、JavaSE、JavaWeb、CCNP &#x1f389;欢迎大家点赞&#x1f44d;收藏⭐评论✍ 目标&#xff1a;192.168.216.150 一、收集信息 1.端口扫描 nmap -T4 -A 192.168.216.150 -p- 看到80端…

【comfyui 】comfyui mac配置教程

comfyui mac配置教程 1. 安装工程依赖与环境配置2. 安装Comfyui3. Comfyui模型下载与运行 1. 安装工程依赖与环境配置 首先&#xff0c;我们找到Mac电脑的终端并打开&#xff0c;我们复制下列代码并粘贴到终端&#xff0c;然后回车&#xff0c;即可开始安装Xcode工具。 xcode…

C++(week17): C++提高:(七)workflow

文章目录 一、Http协议二、Nginx1.概念2.nginx的安装和部署(1)安装nginx(2)使用nginx服务器部署静态资源 3.HTTP服务器架构(1)基于进程、基于线程&#xff1a;APache(2)事件驱动模型&#xff1a;Nginx(3)反向代理(4)负载均衡 三、workflow异步事件引擎 (异步回调模型)1.服务器底…

day26-测试之接口测试postma的请求前置脚本、关联、测试报告

目录 一、请求前置脚本 1.1.概念 1.2.步骤 1.3.代码 1.4.工作原理 二、关联 2.1.应用场景 2.2.实现步骤 2.3.代码 三、测试报告 3.1.安装newman 3.2.命令说明 一、请求前置脚本 1.1.概念 1).书写在”pre-request”标签中 2).postman在http请求发送之前&#xff0c;会自动执行…

easyexcel--多sheet页导入导出

多sheet页导出 核心代码就是下图里面的&#xff0c;使用EasyExcel.writeSheet创建一个sheet,然后用excelWriter写入就行了&#xff0c;很简单 GetMapping("downloadMultiSheet")public void downloadMultiSheet(HttpServletResponse response) throws IOException {…

Linux shell编程学习笔记73:sed命令——沧海横流任我行(上)

0 前言 在大数据时代&#xff0c;我们要面对大量数据&#xff0c;有时需要对数据进行替换、删除、新增、选取等特定工作。 在Linux中提供很多数据处理命令&#xff0c;如果我们要以行为单位进行数据处理&#xff0c;可以使用sed。 1 sed 的帮助信息&#xff0c;功能&#xff…

Golang | Leetcode Golang题解之第352题将数据流变为多个不相交区间

题目&#xff1a; 题解&#xff1a; type SummaryRanges struct {*redblacktree.Tree }func Constructor() SummaryRanges {return SummaryRanges{redblacktree.NewWithIntComparator()} }func (ranges *SummaryRanges) AddNum(val int) {// 找到 l0 最大的且满足 l0 < val…

opencv-python图像增强十一:文档阴影去除

文章目录 一&#xff0c;简介二&#xff0c;方案简述三&#xff0c;算法实现流程&#xff1a;3.1 闭运算提取背景&#xff1a;3.2 背景减除获取文字 四&#xff0c;整体代码&#xff1a;五&#xff0c;效果: 一&#xff0c;简介 图像阴影是光学现象的一种&#xff0c;当物体遮…

从文本到向量:Weaviate在RAG中的应用案例

探索向量数据库在RAG中的应用 在自然语言处理&#xff08;NLP&#xff09;的领域中&#xff0c;向量数据库如Weaviate正变得越来越流行&#xff0c;因为它们为文本数据的管理和检索提供了强大的支持。特别是&#xff0c;它们在实现Retrieval-Augmented Generation&#xff08;R…

无人机适航证取证技术详解

随着无人机技术的飞速发展和广泛应用&#xff0c;无人机的安全性与适航性成为了全球航空领域关注的焦点。无人机适航证作为衡量无人机是否符合安全飞行标准的重要凭证&#xff0c;其取证过程涉及技术、法规、测试等多个方面。本文旨在深入解析无人机适航证取证技术&#xff0c;…

算法的学习笔记—顺时针打印矩阵(牛客JZ29)

&#x1f600;前言 在算法的学习过程中&#xff0c;二维数组的操作是一个非常重要的内容&#xff0c;其中顺时针打印矩阵是一个经典的问题。这个问题不仅考察我们对矩阵的理解&#xff0c;还要求我们具备较强的逻辑思维能力。本文将详细解析如何通过Java代码来实现这一功能。 &…

SpringBoot响应式编程(3)R2DBC

一、概述 1.1简介 R2DBC基于Reactive Streams反应流规范&#xff0c;它是一个开放的规范&#xff0c;为驱动程序供应商和使用方提供接口&#xff08;r2dbc-spi&#xff09;&#xff0c;与JDBC的阻塞特性不同&#xff0c;它提供了完全反应式的非阻塞API与关系型数据库交互。 …

c++进阶——继承的定义,复杂的菱形继承及菱形虚拟继承

目录 前言&#xff1a; 1.继承的概念及定义 1.1继承的概念 1.2 继承定义 1.2.2继承关系和访问限定符 1.2.3继承基类成员访问方式的变化 2.基类和派生类对象赋值转换 3.继承中的作用域 4.派生类的默认成员函数 5.继承与友元 6. 继承与静态成员 7.复杂的菱形继承及菱…

AIoT智能物联网平台定义

随着科技的飞速发展&#xff0c;我们正步入一个由智能设备和互联网络构成的新时代。AIoT&#xff0c;即人工智能物联网&#xff08;Artificial Intelligence of Things&#xff09;&#xff0c;是这个时代的标志性产物。本文旨在探讨AIoT智能物联网平台的定义、核心组件、应用场…

wordpress站群搭建6外部库的引入和测试

wordpress站群搭建6wordpress外部库的引入和测试 本次目标我们主要讲解引入wordpress外部库并测试。 我们将一些外部库和工具包放入到pkg项目&#xff0c;方便其他项目引用。 1.安装go-wordpress库 进入到pkg项目 go get github.com/robbiet480/go-wordpress2.编写工具类 …

22 交换机双工模式

交换机双工模式 一、双工模式 &#xff08;一&#xff09;单工、半双工、全双 ​ 单工&#xff1a; ​ 只有一个信道&#xff0c;传输方向只能是单向的 ​ 半双工&#xff1a; ​ 只有一个信道&#xff0c;在同一时刻&#xff0c;只能是单向传输 ​ 全双工&#xff1a; …

【JavaEE】深入MyBatis:动态SQL操作与实战项目实现指南

目录 MyBatis的进阶操作动态SQL<if>标签<trim>标签<where>标签<set>标签<foreach>标签<include>标签 练习表白墙数据准备引⼊MyBatis 和 MySQL驱动依赖配置MySQL账号密码编写后端代码测试 图书管理系统数据库表设计引⼊MyBatis 和MySQL 驱…

阿里QuickBI实战

目录 引言数据采集、数据治理、数据分析举例资金在经济社会的流通性 概述数据分析的常见问题数据分析的痛点 QuickBI 产品架构图主功能链路数据建模与数据分析的关系使用场景1、搭建报表看板&#xff1a;仪表盘2、中国式报表工具&#xff1a;电子表格3、企业CXO驾驶舱&#xff…