R语言统计分析——OLS回归2

news2025/1/11 4:24:23

参考资料:R语言实战【第2版】

1、简单线性回归

        本例使用R语言中基础安装中的数据集women,来通过身高预测体重,获得一个等式帮助我们分辨出那些过重或过轻的个体。

# 拟合数据
fit<-lm(weight~height,data=women)
# 查看数据拟合结果
summary(fit)
# 查看women数据集中的体重数据
women$weight
# 查看women数据集对应的体重预测数据
fitted(fit)
# 查看实际数据与预测数据间的残差
residuals(fit)
# 绘制散点图
plot(women$height,women$weight,
     xlab="Height(in inches)",
     ylab="Weight(in pounds)")
# 添加拟合曲线
abline(fit)

        通过输出的结果,可以得到预测等式为:

Weight=-8751667+3.45000*Height 

因为身高不可能为0,所以没有必要给截距项一个物理解释,它仅仅是一个常量调整向。在Pr(>|t|)列,可以看到Height变量对应的回归系数显著不为0(p<<0.0.1),表明身高每增高1英尺,体重将预期增加3..45磅。本例只有一个自变量,查看预测方程的拟合程度看Multiple R-squared,其值为0.991,表明预测模型可以解释体重99.1%的方差,其同时也是实际值和预测值之间的相关系数的平方。残差标准误Residual standard error可以认为是模型用身高预测体重的平均误差。F统计量检验所有的预测变量预测响应变量是否都在某一个几率水平上(即检验预测方程是否统计学意义),由于简单回归只有一个预测变量,此处F检验等同于身高回归系数的t检验。

2、多项式回归

        我们还可以通过添加一个二项式来提高回归的预测精度。

# 拟合含二次项的等式
fit2<-lm(weight~height+I(height^2),data=women)
# 查看数据拟合结果
summary(fit2)
# 制作散点图
plot(women$height,women$weight,
     xlab="Height (in inches)",
     ylab="Weight (in lbs)")
# 添加拟合曲线
lines(women$height,fitted(fit2))

I(height^2)表示向预测等式中添加一个身高的平方项。I()函数将括号中的内容看作R的一个常规表达式,即从算术的角度来解释括号中的元素。因为^在表达式中有特殊的含义(表示自变量的交互项达到某个次数,例如,y~(x+z+w)^2表示y~x+z+w+x:z+x:w+z:w)

        结果显示,预测方程为:weight=261.87818-7.34832×height+0.08306×height^2。在p<0.001水平下,回归系数均非常显著。模型的方差解释率(此时应看Adjusted R-squared)为99.94% 。二次项方程的显著性(F-statistic对应的p值<0.01),说明方程具有统计学意义。

        多项式等式可以认为是线性回归模型,因为等式仍是预测变量的加权和形式(本例是身高和身高的平方)。一般来说,n次多项式生成一个n-1个弯曲的曲线。拟合三次多项式,可用:

fit3<-lm(height+I(height^2)+I(height^3),data=women)

        虽然更高次的多项式也可以用,但通常使用比三次更高的项几乎是没有必要的。

        在作图方面,我们还可以使用car包中的scatterplot()函数,它可以很容易、方便地绘制二元关系图。如下:

# 加载car包
library(car)
# 数据绘图
scatterplot(weight~height,data=women,
            pch=19,
            main="Women Age 30~39",
            xlab="Height (in inches)",
            ylab="Weight (lbs.)")

        这个功能加强的图形,既提供了身高与体重的散点图、线性拟合曲线和平滑拟合曲线,还在相应边界展示了每个变量的箱线图。使数据展示的更加直观。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2047141.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTTPS通讯全过程

HTTPS通讯全过程 不得不说&#xff0c;https比http通讯更加复杂惹。在第一次接触https代码的时候&#xff0c;不知道为什么要用用证书&#xff0c;公钥是什么&#xff1f;私钥是什么&#xff1f;他们作用是什么&#xff1f;非对称加密和对称加密是啥&#xff1f;天&#xff0c;…

Redis 单线程为何还能处理速度那么快?

Redis 单线程为何还能处理速度那么快&#xff1f; &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; Redis&#xff0c;作为一款单进程单线程的内存型数据库&#xff0c;其卓越的处理速度令人印象深刻。那么&#xff0c;它是如何实现这一点的呢…

用Python实现9大回归算法详解——05. 梯度提升回归(Gradient Boosting Regression)

1. 梯度提升回归的基本概念 1.1 什么是梯度提升&#xff1f; 梯度提升是一种集成学习方法&#xff0c;通过组合多个弱学习器来构建一个强大的预测模型。在梯度提升框架中&#xff0c;每个弱学习器都试图修正前一个模型的错误。与简单的加法模型不同&#xff0c;梯度提升通过逐…

基于YOLOv8的缺陷检测任务模型训练

文章目录 一、引言二、环境说明三、缺陷检测任务模型训练详解3.1 PCB数据集3.1.1 数据集简介3.1.2 数据集下载3.1.3 构建yolo格式的数据集 3.2 基于ultralytics训练YOLOv83.2.1 安装依赖包3.2.2 ultralytics的训练规范说明3.2.3 创建训练配置文件3.2.4 下载预训练模型3.2.5 训练…

Android逆向题解攻防世界-easy-apk

Jeb反编译apk 题目比较简单&#xff0c;就是一个改了码表的base64编码。 protected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);this.setContentView(0x7F04001B); // layout:activity_main((Button)this.findViewById(0x7F0B0076)).set…

在已经装过Tomcat机子运行war包

1 检查防火墙&#xff0c;验证是否装有jdk,是否配置有JAVA_HOME: ls /usr/apache-tomcat-9.0.52/webapps/ROOT rm -rf /usr/apache-tomcat-9.0.52/webapps/ROOT* ls /usr/apache-tomcat-9.0.52/webapps/ROOT cd /usr/apache-tomcat-9.0.52/webapps/ROOT ls 把war包拉到ROOT…

Python | Leetcode Python题解之第342题整数拆分

题目&#xff1a; 题解&#xff1a; class Solution:def integerBreak(self, n: int) -> int:if n < 3:return n - 1quotient, remainder n // 3, n % 3if remainder 0:return 3 ** quotientelif remainder 1:return 3 ** (quotient - 1) * 4else:return 3 ** quotie…

革新测试管理:集远程、协同、自动化于一身的统一测试管理平台

一、研发背景 当下汽车电子测试领域随着不断发展&#xff0c;自动化、智能化的软硬件一体测试解决方案已经成为趋势。能够整合各种测试资源、自动化测试流程&#xff0c;并提供数据分析和可视化报告&#xff0c;从而提高测试效率、降低成本&#xff0c;并确保汽车电子系统的可…

金价多次尝试刷新最高纪录,美国零售销售数据是绊马索

金价一直在试探新高&#xff0c;该纪录为每盎司2,485美元。而且&#xff0c;强劲的美国零售销售报告正在阻止金价的上涨。 由于强大的阻力&#xff0c;金价无法继续上涨。一周的净空头头寸大增。 发布了强于预期的美国零售销售报告后&#xff0c;金价承受了压力。期望的50个基…

springboot schedule配置多任务并行,任务本身串行

场景&#xff1a; 每日凌晨要执行两个定时任务&#xff0c;分别属于两个业务。有一个业务的定时任务执行时间较长&#xff0c;该任务没执行完之前不能重复执行&#xff08;事务&#xff09;。即业务与业务之间并行&#xff0c;任务本身串行。 技术栈&#xff1a; 采用spring…

机器学习 第11章-特征选择与稀疏学习

机器学习 第11章-特征选择与稀疏学习 11.1 子集搜索与评价 我们将属性称为“特征”(feature)&#xff0c;对当前学习任务有用的属性称为“相关特征”(relevant feature)、没什么用的属性称为“无关特征”(irrelevant feature)。从给定的特征集合中选择出相关特征子集的过程&a…

STL—list—模拟实现【迭代器的实现(重要)】【基本接口的实现】

STL—list—模拟实现 1.list源代码 要想模拟实现list&#xff0c;还是要看一下STL库中的源代码。 _list_node里面装着指向上一个节点的指针prev&#xff0c;和指向下一个节点的指针next&#xff0c;还有数据data 并且它给的是void*&#xff0c;导致后面进行节点指针的返回时…

【大模型部署及其应用 】使用 Llama 3 开源和 Elastic 构建 RAG

使用 Llama 3 开源和 Elastic 构建 RAG 本博客将介绍使用两种方法实现 RAG。 Elastic、Llamaindex、Llama 3(8B)版本使用 Ollama 在本地运行。 Elastic、Langchain、ELSER v2、Llama 3(8B)版本使用 Ollama 在本地运行。 笔记本可从此GitHub位置获取。 在开始之前,让我…

objdump常用命令

语法: objdump <option(s)> <file(s)>用法: 1.打印出与文件头相关的所有信息: 2.打印二进制文件 khushi 中可执行部分的汇编代码内容: objdump -d bomb 3.打印文件的符号表: objdump -t bomb 4.打印文件的动态符号表: objdump -T bomb 5.显示…

watch 和 watchEffect 的隐藏点 --- 非常细致

之前有一篇文章讲述了 watch 和 watchEffect 的使用&#xff0c;但在实际使用中&#xff0c;仍然存在一些“隐藏点”&#xff0c;可能会影响开发&#xff0c;在这补充一下。 1. watch 的隐藏点 1.1 性能陷阱&#xff1a;深度监听的影响 当在 watch 中使用 deep: true 来监听…

多模态大模型中的幻觉问题及其解决方案

人工智能咨询培训老师叶梓 转载标明出处 多模态大模型在实际应用中面临着一个普遍的挑战——幻觉问题&#xff08;hallucination&#xff09;&#xff0c;主要表现为模型在接收到用户提供的图像和提示时&#xff0c;可能会产生与图像内容不符的描述&#xff0c;例如错误地识别颜…

Windows下pip install mysqlclient安装失败

有时候安装mysqlclient插件报如下错误 提示先安装mysqlclient的依赖wheel文件 下载链接(必须对应版本&#xff0c;python3.6版本对1.4.4版本) 如下选择历史版本 mysqlclient官网 https://pypi.org/project/mysqlclient/python3.6对应版本 https://pypi.org/project/mysqlcl…

网络安全实训第一天(dami靶场搭建,XSS、CSRF、模板、任意文件删除添加、框架、密码爆破漏洞)

1.环境准备&#xff1a;搭建漏洞测试的基础环境 安装完phpstudy之后&#xff0c;开启MySQL和Nginx&#xff0c;将dami文件夹复制到网站的根目录下&#xff0c;最后访问安装phptudy机器的IP地址 第一次登录删除dami根目录下install.lck文件 如果检测环境不正确可以下载php5.3.2…

ubuntu20 lightdm无法自动登录进入桌面

现象&#xff1a;在rk3568的板子上自己做了一个Ubuntu 20.04的桌面系统。配置lightdm自动登录桌面&#xff0c;配置方法如下&#xff1a; $ vim /etc/lightdm/lightdm.conf [Seat:*] user-sessionxubuntu autologin-userusername #修改成自动登录的用户名 greeter-show-m…

如何做萤石开放平台的物联网卡定向?

除了用萤石自带的4G卡外&#xff0c;我们也可以自己去电信、移动和联通办物联网卡连接萤石云平台。 1、说在前面 注意&#xff1a;以下流程必须全部走完&#xff0c;卡放在设备上才能连接到萤石云平台。 2、大致流程 登录官网→下载协议→盖章&#xff08;包括骑缝章&#…