module ‘pkgutil‘ has no attribute ‘ImpImporter‘. Did you mean_ ‘zipimporter‘_

news2024/11/17 10:57:02

错误详情:

Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "C:\ProgramData\anaconda3\envs\py312\Scripts\mim.exe\__main__.py", line 4, in <module>
  File "C:\ProgramData\anaconda3\envs\py312\Lib\site-packages\mim\__init__.py", line 10, in <module>
    import setuptools  # noqa: F401
    ^^^^^^^^^^^^^^^^^
  File "C:\ProgramData\anaconda3\envs\py312\Lib\site-packages\setuptools\__init__.py", line 16, in <module>
    import setuptools.version
  File "C:\ProgramData\anaconda3\envs\py312\Lib\site-packages\setuptools\version.py", line 1, in <module>
    import pkg_resources
  File "C:\ProgramData\anaconda3\envs\py312\Lib\site-packages\pkg_resources\__init__.py", line 2172, in <module>
    register_finder(pkgutil.ImpImporter, find_on_path)
                    ^^^^^^^^^^^^^^^^^^^
AttributeError: module 'pkgutil' has no attribute 'ImpImporter'. Did you mean: 'zipimporter'?

解决方法

使用 pip uninstall -y setuptools 来卸载,再通过 pip install setuptools 重新安装即可。

摘要

🔥🚀本专栏教你如何嗨翻Yolov8!🚀🔥

💡升级大招:汲取最新论文精华,给你一整套Yolov8升级秘籍!包括但不限于:注意力加持、卷积大换血、Block革新、Backbone升级、Head重塑,还有优化器大换血!每篇都是干货,给你N种升级选择!

📊订阅专享:订阅后,独家资源等你解锁!实测数据集、详细代码和PDF教程,全部为你精心准备,只为你能更深入地学习和提升!

💖专栏宗旨:质量为王,力求每篇都是精品!用心打造,只为更好的你!

🎉订阅福利:快来订阅吧!感谢大家一路支持!还有专属QQ群等你加入,答疑解惑,一起进步!订阅后,输出订单号,即可入群!

🚀持续更新:已经更新152篇,精彩不断,持续更新中…等你来探索!记得订阅后,更多独家资源等你来拿!

在这里插入图片描述

💎💎💎基础与实战篇💎💎💎

YoloV8实战:各种图绘制汇总(mAP50、mAP50-95、loss、PR_curve、F1_curve)|科研必备|绘图神器

YoloV8的一些使用问题

Yolov8网络详解与实战(附数据集)

YoloV8实战:复现基于多任务的YoloV8方案

YoloV8实战:使用YoloV8实现水下目标检测(RUOD)

YoloV8实战:使用YoloV8实现水下目标的检测(DUO数据集)

YoloV8实战:使用YoloV8检测钢材表面缺陷

YoloV8实战:图像分割|从数据标注到训练、测试|手把手教你实现

YoloV8实战:YoloV8-World应用实战案例

💎💎💎改进Neck篇💎💎💎

YoloV8改进策略:Neck篇|自研Neck层融合模型|深度特征与浅层特征融合,涨点明显|附结构图(独家原创)

YoloV8改进策略:Neck层改进、注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:Neck和Head改进|ECA-Net:用于深度卷积神经网络的高效通道注意力|多种改进方法|附结构图

YoloV8改进策略:Neck改进改进|ELA(独家原创与复现)

YoloV8改进策略:改进Neck|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:Gold-YOLO高效目标检测器与YoloV8激情碰撞

YoloV8改进策略:全新特征融合模块AFPN,更换YoloV8的Neck

YoloV8改进策略:轻量级Slim Neck打造极致的YoloV8

YoloV8改进策略:增加分支,减少漏检

YoloV8改进策略:注意力改进、Neck层改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:Neck层改进|BiFPN+小目标分支实现小目标检测精度的大幅度上升(独家原创)

YoloV8改进策略:Neck和Head改进|GCNet(独家原创)|附结构图

💎💎💎BackBone改进篇💎💎💎

YoloV8改进策略:主干网络改进|复兴DenseNets,RDNet成为新的涨点神器|全网首发

YoloV8改进策略:主干网络篇|MobileNetV4主干替换YoloV8的BackBone(独家原创)

YoloV8改进策略:主干网络篇|StarNet,重写星操作

YoloV8改进策略:BackBone|融合改进的HCANet网络中的多尺度前馈网络(MSFN)|二次创新|即插即用

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:BackBone改进|DCNv4最新实践|高效涨点|多种改进教程|完整论文翻译

YoloV8改进策略:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:BackBone改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:BackBone改进|TransNeXt——ViT的鲁棒Foveal视觉感知(独家原创)

YoloV8改进策略:BackBone改进|焦点调制网络

YoloV8改进策略:BackBone改进|PKINet

YoloV8改进策略:BackBone改进|ECA-Net:用于深度卷积神经网络的高效通道注意力

YoloV8改进策略:BackBone改进|EfficientVMamba(独家原创)

YoloV8改进策略:BackBone改进|2024年最新注意力机制ELA(独家原创,全网首发)

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点

YoloV8改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现YoloV8的有效涨点

YoloV8改进策略:基于RevCol,可逆的柱状神经网络的完美迁移,YoloV8的上分利器

YoloV8改进策略:Hiera改进YoloV8,实现精度和速度的双提升!

YoloV8改进策略:EfficientViT,高效的视觉transformer与级联组注意力提升YoloV8的速度和精度,打造高效的YoloV8

YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8

YoloV8改进策略:RepViT改进YoloV8,轻量级的Block助力YoloV8实现更好的移动性

YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)

YoloV8改进策略:基于图的稀疏注意移动视觉的MobileViG,YoloV8用上了先进的图卷积网络

YoloV8改进策略:基于分层注意力的FasterViT,让YoloV8实现性能的飞跃

YoloV8改进策略:InceptionNext主干替换YoloV8和YoloV5的主干

YoloV8改进策略:轻量级的CloFormer助力Yolov8在速度和精度上实现双双提升

YoloV8改进策略:主干网络改进|SHViT高效视觉变换器(独家原创)

YoloV8改进策略:注意力改进|BackBone改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:BackBone改进|GCNet(独家原创)|附结构图

💎💎💎数据增强篇💎💎💎

YoloV8数据处理:数据增强篇|图像旋转

💎💎💎Block改进篇💎💎💎

YoloV8改进策略:Block改进|复兴DenseNets,RDNet成为新的涨点神器|即插即用|全网首发

YoloV8改进策略:Block改进|轻量实时的重参数结构|最新改进|即插即用(全网首发)

YoloV8改进策略:Block篇|Vision-LSTM将xLSTM 作为通用视觉主干(全网首发)

YoloV8改进策略:Block篇|即插即用|StarNet,重写星操作,使用Block改进YoloV8(全网首发)

YoloV8改进策略:Block篇|FFA-Net:用于单图像去雾的特征融合注意力网络(独家原创)

YoloV8改进策略:Block篇|引入UIB模块,打造轻量级的YoloV8|多模块融合(独家原创)

YoloV8改进策略:Block改进|DCNv4最新实践|高效涨点|完整论文翻译

YoloV8改进策略:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:Block改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:Block改进|MogaNet——高效的多阶门控聚合网络

YoloV8改进策略:Block改进|自研Block,涨点超猛|代码详解|附结构图

YoloV8改进策略:Block改进|焦点调制网络(独家原创)

YoloV8改进策略:Block改进|2024年,遥感图像最新主干PKINet(独家改进,全网首发)

YoloV8改进策略:Block改进|轻量级的Mamba打造优秀的YoloV8|即插即用,简单易懂|附Block结构图|检测、分割、关键点均适用(独家原创)

YoloV8改进策略:Block改进|改进HCF-Net的MDCR模块|附结构图|多种改进方法(独家改进)

YoloV8改进策略:Block改进|HCF-Net的PPA模块|附结构图|(独家原创,全网首发)

YoloV8改进策略:双动态令牌混合器(D-Mixer)的TransXNet,实现YoloV8的有效涨点

YoloV8改进策略:SwiftFormer,全网首发,独家改进的高效加性注意力用于实时移动视觉应用的模型,重构YoloV8

YoloV8改进策略:EfficientViT,高效的视觉transformer与级联组注意力提升YoloV8的速度和精度,打造高效的YoloV8

YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8

YoloV8改进策略:RepViT改进YoloV8,轻量级的Block助力YoloV8实现更好的移动性

YoloV8改进策略:Diverse Branch Block改进YoloV8,继续在重参数结构上恐龙抗狼

YoloV8改进策略:FastVit与YoloV8完美融合,重参数重构YoloV8网络(全网首发)

YoloV8改进策略:基于分层注意力的FasterViT,让YoloV8实现性能的飞跃

YoloV8改进策略:InceptionNeXt和YoloV8完美结合,让YoloV8大放异彩

YoloV8改进策略:VanillaNet极简主义网络,大大降低YoloV8的参数

YoloV8改进策略:让SeaFormer走进Yolov8的视野,轻量高效的注意力模块展现出无与伦比的魅力

YoloV8改进策略:Conv2Former与YoloV8深度融合,极简网络,极高性能

YoloV8改进策略:将ConvNextV2与YoloV8激情碰撞,能迸发出什么样的火花呢

YoloV8改进策略:将CIoU替换成Wise-IoU,幸福涨点,值得拥有,还支持EIoU、GIoU、DIoU、SIoU无缝替换。

YoloV8改进策略:Block改进|PromptIR(NIPS‘2023)样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

YoloV8改进策略:Block改进|SHViT高效视觉变换器(独家原创)

💎💎💎Head改进篇💎💎💎

YoloV8改进策略:改进Head|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:注意力改进|Head改进|自研全新的Mamba注意力|即插即用,简单易懂:附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:Neck和Head改进|GCNet(独家原创)|附结构图

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

💎💎💎多种方式融合改进篇💎💎💎

YoloV8改进策略:Neck层改进|BiFPN+小目标分支实现小目标检测精度的大幅度上升(独家原创)

💎💎💎上采样改进篇💎💎💎

YoloV8分割改进策略:上采样改进|动态上采样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

YoloV8改进策略:上采样改进|动态上采样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

💎💎💎下采样改进篇💎💎💎

YoloV8改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

YoloV8改进策略:下采样改进|HWD改进下采样

💎💎💎卷积篇💎💎💎

YoloV8改进策略:卷积篇|Kan行天下之BottleNeckReLUKANConv2DLayer

YoloV8改进策略:卷积篇|Kan行天下之ReluKan

YoloV8改进策略:卷积篇|Kan行天下之小波Kan

YoloV8改进策略:卷积篇|Kan行天下之GRAM,KAN遇见Gram多项式V2版本

YoloV8改进策略:卷积篇Kan行天下之JacobiKAN,KAN遇见Jacobi多项式

YoloV8改进策略:卷积篇|Kan行天下之GRAM,KAN遇见Gram多项式

YoloV8改进策略:卷积篇|Kan行天下之FastKANConv

YoloV8改进策略:卷积篇|基于PConv的二次创新|附结构图|性能和精度得到大幅度提高(独家原创)

YoloV8改进策略:Conv改进|DCNv4最新实践|高效涨点|多种改进教程|完整论文翻译

YoloV8改进策略:Conv改进|TBC卷积,代码注释|多种改进方法|轻量又涨点|即插即用

YoloV8改进策略:卷积改进|MogaNet——高效的多阶门控聚合网络

YoloV8改进策略:卷积改进|RefConv打造轻量化YoloV8利器

YoloV8改进策略:卷积改进|DOConv轻量卷积,即插即用|适用各种场景

YoloV8改进策略:UniRepLKNet,大核卷积的最新成果,轻量高效的首选(全网首发)

YoloV8改进策略:AKConv即插即用,轻松涨点

YoloV8改进策略:WaveletPool解决小目标的混叠问题,提高小目标的检测精度

YoloV8改进策略:动态蛇形卷积,解决管状结构问题

YoloV8改进策略:RefConv打造轻量化YoloV8利器

YoloV8改进策略:独家原创,LSKA(大可分离核注意力)改进YoloV8,比Transformer更有效,包括论文翻译和实验结果

YoloV8改进策略:可变形大核注意力D-LKA,YoloV8的超大杯酱香拿铁

YoloV8改进策略:Intel面向参数高效动态卷积KernelWarehouse,YoloV8的上分显眼包

YoloV8改进策略:CoordConv给卷积加上坐标,从而使其具备了空间感知能力

YoloV8改进策略:SPD-Conv加入到YoloV8中,让小目标无处遁形

YoloV8改进策略:即插即用的SCConv,YoloV8的轻量化涨点神器

YoloV8改进策略:Intel的多维动态卷积,涨点更轻松

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:InceptionNeXt和YoloV8完美结合,让YoloV8大放异彩

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:将DCN v1与v2运用到YoloV8中,化身成上分小黑子

YoloV8改进策略:卷积篇|使用PConv替换YoloV8中的卷积|即插即用,简单高效

💎💎💎蒸馏篇💎💎💎

YoloV8改进策略:蒸馏改进|MGDLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

YoloV8改进策略:蒸馏改进|CWDLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

YoloV8改进策略:蒸馏改进|MimicLoss|使用蒸馏模型实现YoloV8无损涨点|特征蒸馏

💎💎💎自研篇💎💎💎

YoloV8改进策略:注意力篇|BackBone改进|附结构图|自研基于xLSTM的注意力(全网首发)

YoloV8改进策略:注意力篇|Block改进|附结构图|自研基于xLSTM的注意力(全网首发)

YoloV8改进策略:改进Head|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:Block改进|自研Block,涨点超猛|代码详解|附结构图

YoloV8改进策略:改进BackBone|自研频域和空间注意力,超越GAM,CBAM等注意力|注意力创新改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:基于自研的图注意力机制改进| 独家改进方法|图卷积和注意力融合模块

YoloV8改进策略:下采样改进|自研下采样模块(独家改进)|疯狂涨点|附结构图

💎💎💎注意力篇💎💎💎

YoloV8改进策略:注意力篇|BackBone改进|附结构图|自研基于xLSTM的注意力(全网首发)
YoloV8改进策略:注意力篇|Block改进|附结构图|自研基于xLSTM的注意力(全网首发)

YoloV8改进策略:注意力篇|BackBone改进|自研像素和通道并行注意力模块(独家原创)

YoloV8改进策略:注意力篇|像素注意力和通道注意力相融合,改进Bottleneck(独家原创)

YoloV8改进策略:Neck改进和Head改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

YoloV8改进策略:注意力改进|基于Tied的SE注意力,代码注释:多种改进方法|轻量又涨点|即插即用

YoloV8改进策略:注意力改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

YoloV8改进策略:BackBone改进|ECA-Net:用于深度卷积神经网络的高效通道注意力

YoloV8改进策略:Neck和Head改进|ECA-Net:用于深度卷积神经网络的高效通道注意力|多种改进方法|附结构图

YoloV8改进策略:BackBone改进|GCNet(独家原创)|附结构图

YoloV8改进策略:注意力改进、Neck层改进|自研全新的Mamba注意力|即插即用,简单易懂|附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:注意力改进|Head改进|自研全新的Mamba注意力|即插即用,简单易懂:附结构图|检测、分割、关键点均适用(独家原创,全世界首发)

YoloV8改进策略:全局注意力机制|注意力改进|高效涨点|代码注释与改进|包括改进后的结构图

YoloV8改进策略:Agent Attention|Softmax与线性注意力的融合研究|有效涨点|代码注释与改进|全网首发(唯一)

YoloV8改进策略:BAM瓶颈注意力模块|BAM详解以及代码注释|CBAM姊妹篇|有效涨点

YoloV8改进策略:基于自研的图注意力机制改进| 独家改进方法|图卷积和注意力融合模块

YoloV8改进策略:基于频域多轴表示学习模块|全网首发|高效涨点|代码注释详解

YoloV8改进策略:AAAI 2024 最新的轴向注意力| 即插即用,改进首选|全网首发,包含数据集和代码,开箱即用!

YoloV8改进策略:Swift Parameter-free Attention,无参注意力机制,超分模型的完美迁移

YoloV8改进策略:三元注意力,小参数大能力,即插即用,涨点自如

YoloV8改进策略:OrthoNets最新的SOTA注意力机制,让YoloV8涨点自如

YoloV8改进策略:聚焦线性注意力重构YoloV8

YoloV8改进策略:重新思考高效的基于注意力的移动块模型EMO重新定义了轻量化的YoloV8

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:EMA注意力机制在YoloV8中的创新应用与显著性能提升|即插即用

YoloV8改进策略:RFAConv模块即插即用,实现YoloV8丝滑上分

YoloV8改进策略:基于双层路由注意力的视觉Transformer提升YoloV8的检测能力

YoloV8改进策略:注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

💎💎💎正则化改进💎💎💎

YoloV8改进策略:BN和LN的自适应结合的BCN| 正则化改进|有效涨点|代码二次改进,加注释详解

💎💎💎损失函数篇💎💎💎

YoloV8改进策略:IoU改进|Iou Loss最新实践|高效涨点|完整论文翻译

YoloV8改进策略:Shape-IoU,考虑边框形状与尺度的度量

YoloV8改进策略:Inner-IoU+clou,YoloV8的涨点明珠

YoloV8改进策略:NWD小目标检测新范式,助力YoloV5、V8在小目标上暴力涨点

YoloV8改进策略:MPDIoU超越现有的IoU,与YoloV8一起恐龙扛狼扛狼扛

💎💎💎复现论文💎💎💎

YoloV8改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法

YoloV8改进策略:复现HIC-YOLOv5,打造HIC-YOLOv8,用于小物体检测

💎💎💎优化器💎💎💎

YoloV8改进策略:来自谷歌最新的优化器——Lion,在速度和精度上双双提升。Adam表示年轻人不讲武德

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2046512.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数值计算引擎:搭建远程容器开发环境

Build VS Code Remote Docker Development Environment 大型CAE软件开发技术栈通常依赖多个第三方库&#xff0c;因此从零开始配置开发、编译、运行等环境通常较为繁琐。但随着公司的发展壮大&#xff0c;却经常需要为新加入的成员配备相应的开发环境&#xff1b;另外&#xf…

深入理解 go unsafe

往期精选文章推荐&#xff1a; 深入理解 go mapgo 常用关键字深入理解 Go 数组、切片、字符串深入理解channel深入理解 go context深入 go interface 底层原理深入理解 go reflect深入理解 go unsafe 为什么有go unsafe Go 是支持指针的语言&#xff0c;但是为了保持简洁、安…

HW高耗电提醒竞品调研

摘要 高耗电提醒通知的规则,天生存在打扰用户的特点,故在触发高耗电检测阈值还要根据是否非可感知场景,进一步修正高耗电提醒的准确率。同时消息通知的交互设计中也进行少打扰静默设计 一、功耗高耗电通知监控规则 1.1 高耗电上报规则和文案 支持的耗电类型 上报高耗电通…

CTF-mysql

整数型 输入1发现有回显 发现and11有回显12没有 判断字段数 1 order by 2 确定回显点 -1 union select 1,2 查看数据库名称 -1 union selecr 1,database() 查看数据库名 -1 union slelct group_concat(schema_name)from information_schema.schemata 查看表名 -1 union s…

MySQL进阶难度知识点分析

以下为本人在阅读《MySQL是怎样运行的&#xff1a;从根儿上理解MySQL》这本书时对一些难度和重点的笔记&#xff0c;主要用于个人学习使用&#xff0c;内容可能存在出入&#xff0c;望理性食用~ 1. sql执行流程 一条sql的执行流程大致可分为客户端获取与数据库服务器的连接&am…

使用 Hugging Face Transformers 创建文本生成模型

文本生成是自然语言处理中的一个重要任务&#xff0c;在聊天机器人、自动写作等领域有着广泛的应用。Hugging Face Transformers 是一个流行的 Python 库&#xff0c;它提供了大量预训练的模型以及API来实现各种自然语言处理任务。本文将详细介绍如何使用 Hugging Face Transfo…

Golang | Leetcode Golang题解之第338题比特位计数

题目&#xff1a; 题解&#xff1a; func countBits(n int) []int {bits : make([]int, n1)for i : 1; i < n; i {bits[i] bits[i&(i-1)] 1}return bits }

工业三防平板在数字化工厂建设中的重要趋势

在当今数字化浪潮的冲击下&#xff0c;工厂建设的数字化转型已,成为不可逆转的趋势。而在这一进程中&#xff0c;工业三防平板正逐渐斩露头角&#xff0c;发挥着越来越重要的作用。随着工业4.0理念的不断深入&#xff0c;工厂对于生产效率、质量控制、管理精细化的要求越来越高…

Elasticsearch核心概念:

2.Elasticsearch核心概念: 2.1.Lucene和Elasticsearch的关系: 1.Lucene&#xff1a;最先进、功能最强大的搜索库&#xff0c;直接基于lucene开发&#xff0c;非常复杂&#xff0c;api复杂2.Elasticsearch&#xff1a;基于lucene&#xff0c;封装了许多lucene底层功能&#xf…

2-67 基于matlab的经典数字图像处理算法仿真

基于matlab的经典数字图像处理算法仿真&#xff0c;17页文档报告。包括图像的傅里叶滤波及压缩&#xff0c;图像的DCT高通、低通滤波&#xff0c;图像直方图均衡化&#xff0c;图像平滑与锐化&#xff0c;图像的模糊化&#xff0c;哈夫曼编码等&#xff0c;以及GUI图形化界面。…

鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的?

任务即线程 在鸿蒙内核中&#xff0c;广义上可理解为一个任务就是一个线程 官方是怎么描述线程的 基本概念 从系统的角度看&#xff0c;线程是竞争系统资源的最小运行单元。线程可以使用或等待CPU、使用内存空间等系统资源&#xff0c;并独立于其它线程运行。 鸿蒙内核每个…

在Linux中进行supervisor进程守护的安装和配置

supervisor用于守护进程&#xff0c;在进程意外终止后将其重启。 supervisor没有监听内部程序和自动重启的功能。 Python-3.9.5安装 第一步&#xff0c;检查Linux系统是否自带Python。 命令&#xff1a;python --version 第二步&#xff0c;安装依赖包。 命令&#xff1a;…

Java超市收银系统(八、数据导入)

引言 当选择1时&#xff0c;程序读取 “商品信息.xls” 文件&#xff0c;将所有数据存放于product集合中&#xff0c;然后将集合中的所有数据增加到商品表中&#xff0c;增加的时候要检查每条记录的条形码在商品表中是否存在&#xff0c;若存在&#xff0c;则不需要增加到数据库…

tortoisegit下载及其使用流程

下载 官方下载链接&#xff1a;Download – TortoiseGit – Windows Shell Interface to Git 选择适合自己的电脑位数的版本&#xff1a;一般64的兼容32的 按照就不介绍了怎么开心怎么来&#xff0c;本篇暂时为了支持一位粉丝的疑惑 安装的话没有特殊配置暂不介绍&#xff0c…

Dbeaver连接达梦数据库教程(图文版)

本章教程&#xff0c;主要介绍如何用Dbeaver连接国产达梦数据库。 达梦数据库Docker部署教程参考&#xff1a;https://yang-roc.blog.csdn.net/article/details/141158807 一、Dbeaver安装包下载 下载Dbeaver&#xff1a;https://dbeaver.io/ 在这里就不演示安装过程了&#xf…

GPU驱动的大规模静态物件渲染

GPU Driven 的静态物件渲染&#xff0c;听起来很高级&#xff0c;其实具体操作很简单&#xff0c;基础就是直接调用 Graphics.DrawMeshInstancedIndirect 这个 Unity 内置接口就可以了。但我们项目对这个流程做了一些优化&#xff0c;使得支持的实体数量有大幅提升。 这套系统主…

海南云亿商务咨询有限公司引领抖音电商新潮流

在当今这个数字化时代&#xff0c;电商行业如日中天&#xff0c;而抖音作为短视频与社交电商完美融合的典范&#xff0c;正以前所未有的速度改变着人们的购物习惯和消费模式。在这片充满机遇与挑战的蓝海中&#xff0c;海南云亿商务咨询有限公司凭借其敏锐的市场洞察力和专业的…

【算法/学习】:flood算法

✨ 君子坐而论道&#xff0c;少年起而行之 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;算法学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &…

鸿蒙交互事件开发01——点击/拖拽/触摸事件

如果你也对鸿蒙开发感兴趣&#xff0c;加入“Harmony自习室”吧&#xff01;扫描下方名片&#xff0c;关注公众号&#xff0c;公众号更新更快&#xff0c;同时也有更多学习资料和技术讨论群。 1 概 述 事件是人机交互的基础&#xff0c;鸿蒙开发中&#xff0c;事件分…

EmguCV学习笔记 VB.Net 2.1 颜色空间和颜色

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV学习笔记目录 Vb.net EmguCV学习笔记目录 C# 笔者的博客网址&#xff1a;VB.Net-CSDN博客 教程相关说明以及如何获得pdf教程…