【Redis】Redis典型应用-分布式锁

news2024/12/22 19:47:07

目录

什么是分布式锁?

分布式锁的基础实现

引入过期事件

引入校验ID

引入lua

引入watch dog(看门狗)

引⼊ Redlock 算法


什么是分布式锁?

在⼀个分布式的系统中, 也会涉及到多个节点访问同⼀个公共资源的情况. 此时就需要通过 锁 来做互斥控制, 避免出现类似于 "线程安全" 的问题.

⽽C++ 的 std::mutex, 这样的锁针对的是当前进程中的多个线程, 在分布式的这种多个进程多个主机的场景下就⽆能为⼒了.此时就需要使⽤到分布式锁.

本质上就是使⽤⼀个公共的服务器, 来记录 加锁状态.
这个公共的服务器可以是 Redis, 也可以是其他组件(⽐如 MySQL 或者 ZooKeeper 等), 还可以
是我们⾃⼰写的⼀个服务.

分布式锁的基础实现

思路⾮常简单. 本质上就是通过⼀个键值对来标识锁的状态.
举个例⼦: 考虑买票的场景, 现在⻋站提供了若⼲个⻋次, 每个⻋次的票数都是固定的.
现在存在多个服务器节点, 都可能需要处理这个买票的逻辑: 先查询指定⻋次的余票, 如果余票 > 0, 则设置余票值 -= 1.

显然上述的场景是存在 "线程安全" 问题的, 需要使⽤锁来控制.否则就可能出现 "超卖" 的情况.

此时如何进⾏加锁呢? 我们可以在上述架构中引⼊⼀个 Redis , 作为分布式锁的管理器.

此时, 如果 买票服务器1 尝试买票, 就需要先访问 Redis, 在 Redis 上设置⼀个键值对. ⽐如 key 就是⻋次, value 随便设置个值 (⽐如 1). 

如果这个操作设置成功, 就视为当前没有节点对该 001 ⻋次加锁, 就可以进⾏数据库的读写操作. 操作完成之后, 再把 Redis 上刚才的这个键值对给删除掉.

如果在 买票服务器1 操作数据库的过程中, 买票服务器2 也想买票, 也会尝试给 Redis 上写⼀个键值对,key 同样是⻋次. 但是此时设置的时候发现该⻋次的 key 已经存在了, 则认为已经有其他服务器正在持有锁, 此时 服务器2 就需要等待或者暂时放弃.

Redis 中提供了 setnx 操作, 正好适合这个场景. 即: key 不存在就设置, 存在则直接失败.

引入过期事件

上述⽅案并不完整.

当 服务器1 加锁之后, 开始处理买票的过程中, 如果 服务器1 意外宕机了, 就会导致解锁操作 (删除该key) 不能执⾏. 就可能引起其他服务器始终⽆法获取到锁的情况.为了解决这个问题, 可以在设置 key 的同时引⼊过期时间. 即这个锁最多持有多久, 就应该被释放.

可以使⽤ set ex nx 的⽅式, 在设置锁的同时把过期时间设置进去.

注意! 此处的过期时间只能使⽤⼀个命令的⽅式设置.
如果分开多个操作, ⽐如 setnx 之后, 再来⼀个单独的 expire, 由于 Redis 的多个指令之间不存在关
联, 并且即使使⽤了事务也不能保证这两个操作都⼀定成功, 因此就可能出现 setnx 成功, 但是 expire失败的情况.此时仍然会出现⽆法正确释放锁的问题.

引入校验ID

对于 Redis 中写⼊的加锁键值对, 其他的节点也是可以删除的.

⽐如 服务器1 写⼊⼀个 "001": 1 这样的键值对, 服务器2 是完全可以把 "001" 给删除掉的.当然, 服务器2 不会进⾏这样的 "恶意删除" 操作, 不过不能保证因为⼀些 bug 导致 服务器2 把锁误删除.

为了解决上述问题, 我们可以引⼊⼀个校验 id.
⽐如可以把设置的键值对的值, 不再是简单的设为⼀个 1, ⽽是设成服务器的编号. 形如 "001": "服务器1".

这样就可以在删除 key (解锁)的时候, 先校验当前删除 key 的服务器是否是当初加锁的服务器, 如果是,才能真正删除; 不是, 则不能删除.想要获得校验ID和进行删除就要使用”get”和“del”这两个逻辑操作,但是很明显, 解锁逻辑是两步操作 "get" 和 "del", 这样做并⾮是原⼦的.

引入lua

为了使解锁操作原⼦, 可以使⽤ Redis 的 Lua 脚本功能.Lua 也是⼀个编程语⾔. 读作 "撸啊". 是葡萄⽛语中的 "⽉亮" 的意思. ⼀个 lua 脚本会被 Redis 服务器以原⼦的⽅式来执⾏.

引入watch dog(看门狗)

述⽅案仍然存在⼀个重要问题. 当我们设置了 key 过期时间之后 (⽐如 10s), 仍然存在⼀定的可能性,当任务还没执⾏完, key 就先过期了. 这就导致锁提前失效.

把这个过期时间设置的⾜够⻓, ⽐如 30s, 是否能解决这个问题呢? 很明显, 设置多⻓时间合适, 是⽆⽌
境的. 即使设置再⻓, 也不能完全保证就没有提前失效的情况.
⽽且如果设置的太⻓了, 万⼀对应的服务器挂了, 此时其他服务器也不能及时的获取到锁.
因此相⽐于设置⼀个固定的⻓时间, 不如动态的调整时间更合适.
所谓 watch dog, 本质上是加锁的服务器上的⼀个单独的线程, 通过这个线程来对锁过期时间进⾏ "续约".这个线程是业务服务器上的, 不是 Redis 服务器的.

初始情况下设置过期时间为 10s. 同时设定看⻔狗线程每隔 3s 检测⼀次.
那么当 3s 时间到的时候, 看⻔狗就会判定当前任务是否完成.

  • 如果任务已经完成, 则直接通过 lua 脚本的⽅式, 释放锁(删除 key).
  • 如果任务未完成, 则把过期时间重写设置为 10s. (即 "续约")

这样就不担⼼锁提前失效的问题了. ⽽且另⼀⽅⾯, 如果该服务器挂了, 看⻔狗线程也就随之挂了, 此时⽆⼈续约, 这个 key ⾃然就可以迅速过期, 让其他服务器能够获取到锁了.

引⼊ Redlock 算法

实践中的 Redis ⼀般是以集群的⽅式部署的 (⾄少是主从的形式, ⽽不是单机). 那么就可能出现以下⽐较极端的⼤冤种情况:

 服务器1 向 master 节点进⾏加锁操作. 这个写⼊ key 的过程刚刚完成, master 挂了; slave 节
点升级成了新的 master 节点. 但是由于刚才写⼊的这个 key 尚未来得及同步给 slave 呢, 此时
就相当于 服务器1 的加锁操作形同虚设了, 服务器2 仍然可以进⾏加锁 (即给新的 master 写
⼊ key. 因为新的 master 不包含刚才的 key).

为了解决这个问题, Redis 的作者提出了 Redlock 算法.

我们引⼊⼀组 Redis 节点. 其中每⼀组 Redis 节点都包含⼀个主节点和若⼲从节点. 并且组和组之间存储的数据都是⼀致的, 相互之间是 "备份" 关系(⽽并⾮是数据集合的⼀部分, 这点有别于 Redis cluster).加锁的时候, 按照⼀定的顺序, 写多个 master 节点. 在写锁的时候需要设定操作的 "超时时间". ⽐如50ms. 即如果 setnx 操作超过了 50ms 还没有成功, 就视为加锁失败.

如果给某个节点加锁失败, 就⽴即再尝试下⼀个节点.当加锁成功的节点数超过总节点数的⼀半, 才视为加锁成功.如上图, ⼀共五个节点, 三个加锁成功, 两个失败, 此时视为加锁成功.这样的话, 即使有某些节点挂了, 也不影响锁的正确性. 

同理, 释放锁的时候, 也需要把所有节点都进⾏解锁操作. (即使是之前超时的节点, 也要尝试解锁, 尽量保证逻辑严密).

简⽽⾔之, Redlock 算法的核⼼就是, 加锁操作不能只写给⼀个 Redis 节点, ⽽要写个多个!! 分布式系统中任何⼀个节点都是不可靠的. 最终的加锁成功结论是 "少数服从多数的".由于⼀个分布式系统不⾄于⼤部分节点都同时出现故障, 因此这样的可靠性要⽐单个节点来说靠谱不少.


今天对Redis作为分布式锁的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2044872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

访非洲 助公益 促和平 朱共山妻子杨燕女士勇担社会责任

作为协鑫集团董事长朱共山先生的夫人,杨燕女士一直以其卓越的社会责任感和对公益事业的热忱著称。近些年,杨燕女士前往非洲访问,旨在加强中非之间的友好交流,支持我国传统书画事业发展,并促进地区的和平与稳定。朱共山…

AI大模型入门基础教程(非常详细),AI大模型入门到精通,收藏这一篇就够了!

什么是 AI大模型? AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。 这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。 为什么要学AI大模型? 2024人工…

【Hot100】LeetCode—189. 轮转数组

目录 1- 思路自定义 reverse 翻转函数 2- 实现⭐189. 轮转数组——题解思路 3- ACM 实现 原题链接:189. 轮转数组 1- 思路 自定义 reverse 翻转函数 2- 实现 ⭐189. 轮转数组——题解思路 class Solution {public void rotate(int[] nums, int k) {k % nums.lengt…

瑞友科技项目经理认证负责人杨文娟受邀为第四届中国项目经理大会演讲嘉宾︱PMO评论

全国项目经理专业人士年度盛会 北京瑞友科技股份有限公司项目经理认证负责人杨文娟女士受邀为PMO评论主办的全国项目经理专业人士年度盛会——2024第四届中国项目经理大会演讲嘉宾,演讲议题为“瑞友科技项目经理人才培养体系落地实践”。大会将于10月26-27日在北京举…

HCIP-HarmonyOS Application Developer 习题(三)

1、在JS(JavaScript)Ul框架中,完成对平台层进行抽象,提供抽象接口,对接到系统平台的是哪一层? A. 应用层 B. 前端框架层 C. 引擎层 D. 平台适配层 答案:D 分析:适配层主要完成对平台层进行抽象,提供抽象接…

在亚马逊云科技上部署Llama大模型并开发负责任的AI生活智能助手

项目简介: 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践,并应用到自己的日常工作里。 本次介绍的是如何在亚马逊云科技上利用Sag…

​R语言里的字符型向量和布尔型向量运用

下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接: 3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN…

【机器学习】反向传播的基本概念、如何优化反向传播算法以及大量样本如何优化反向传播

引言 反向传播算法是深度学习和机器学习中的一个核心概念,主要用于训练神经网络 文章目录 引言一、反向传播算法的基本概念1.1 反向传播算法的基本原理1.2 前向传播1.3 计算误差1.4 反向传播1.5 应用与挑战1.6 神经元模型和神经网络结构1.7 总结 二、如何优化反向传…

JavaScript基础——函数

函数简介 定义函数 调用函数 函数的参数和返回值 函数参数 1.有形参情况下不传递实参 2.传递数量少于形参个数的实参 3.传递数量等于形参个数的实参 函数返回值 报错Uncaught SyntaxError: Illegal return statement 返回数字和字符串 返回数组、对象和函数 没有返回…

史上最快,仅需10ms的动态点云剔除方法

论文题目: A Fast Dynamic Point Detection Method for LiDAR-Inertial Odometry in Driving Scenarios 论文作者: Zikang Yuan, Xiaoxiang Wang, Jingying Wu, Junda Cheng, Xin Yang 导读: 本文实现了一种十分快速的动态点剔除方法&…

python 数据可视化折线图练习(下:代码演示)

根据上篇对三国疫情情况数据的罗列,构建折线图完成数据展示。(示例如下) 接下来是具体代码演示 import json from pyecharts.charts import Line from pyecharts.options import TitleOpts , LegendOpts , ToolboxOpts ,VisualMapOpts , T…

vue 3d echarts scatter3D元素塌陷,图标塌陷进地图完美解决方案

当我们手机用 scatter3D 类型时&#xff0c;最小值因为渲染问题会塌陷进模型里面&#xff0c;所以只要让value固定&#xff0c;再将label formatter 配合 boxHeight属性即可解决&#xff0c;&#xff08;代码附带自定义label图标解决办法&#xff09; 解决&#xff1a; <…

np.pad各种方式的图文解释

‘constant’——表示连续填充相同的值&#xff0c;每个轴可以分别指定填充值&#xff0c;constant_values&#xff08;x,y&#xff09;时前面用x填充&#xff0c;后面用y填充&#xff0c;缺省值填充0 ‘edge’——表示用边缘值填充 ‘linear_ramp’——表示用边缘递减的方式填…

Windows编程:图标资源、光标资源、字符串资源、加速键资源、WM_PAINT消息、绘图

承接前文&#xff1a; win32窗口编程windows 开发基础win32-注册窗口类、创建窗口win32-显示窗口、消息循环、消息队列win32-鼠标消息、键盘消息、计时器消息、菜单资源 本文目录 图标资源光标资源WM_SETCURSOR 消息 字符串资源加速键资源WM_PAINT 消息绘图绘图编程绘图基础基…

后端Web之分层解耦(控制反转IOC-依赖注入DI)

目录 1.三层架构 2.IOC-DI引入 3.IOC-DI使用 4.IOC细节 5.DI细节 内聚&#xff08;Cohesion&#xff09;和耦合&#xff08;Coupling&#xff09;是软件工程中两个重要的概念&#xff0c;它们衡量了软件组件的组织方式和组件之间的相互依赖程度。高内聚性意味着模块内的元…

2024真无线蓝牙耳机怎么选?24年四款性价比畅销爆款机型盘点

2024年&#xff0c;真无线蓝牙耳机的市场依旧竞争激烈&#xff0c;各种品牌和型号如雨后春笋般涌现&#xff0c;面对琳琅满目的选择&#xff0c;2024真无线蓝牙耳机怎么选&#xff1f;消费者在寻找具备高性价比和优秀性能的耳机时往往会感到困惑&#xff0c;那么我将针对大家的…

Nature Medicine | 常规机器学习构建蛋白质组衰老时钟!对于数学基础不好的同学,好好思考一下这种研究模式如何借鉴?

今天给各位老铁们分享一篇于2024年08月08号发表在 Nature Medicine [58.7] 的文章&#xff1a;"Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations"&#xff0c;蛋白质组衰老时钟可预测不同人群的死亡率和常…

机器学习-卷积神经网络(CNN)

机器学习-卷积神经网络&#xff08;CNN&#xff09; 1. 卷积神经网络的基本概念1.1 卷积层&#xff08;Convolutional Layer&#xff09;1.1.1 卷积操作1.1.2 特征图&#xff08;Feature Map&#xff09; 1.2 激活函数&#xff08;Activation Function&#xff09;1.2.1 ReLU&a…

JavaEE从入门到起飞(八) ~ Git

git 概括 Git是一个分布式版本控制工具&#xff0c;主要用于管理开发过程中的源代码文件(Java类、xml文件、html页面等)。 学了git能干什么&#xff1f; 代码回溯 查看历史提交记录并恢复到之前的某个状态。这在发现错误或需要查看特定版本时非常有用。和CtrlZ的区别在于g…

【图机器学习系列】(一)图机器学习简介

微信公众号&#xff1a;leetcode_algos_life&#xff0c;代码随想随记 小红书&#xff1a;412408155 CSDN&#xff1a;https://blog.csdn.net/woai8339?typeblog &#xff0c;代码随想随记 GitHub: https://github.com/riverind 抖音【暂未开始&#xff0c;计划开始】&#xf…