一、什么是设计模式
设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。
二、设计模式的六大原则
1、开闭原则(Open Close Principle)
开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。
2、里氏代换原则(Liskov Substitution Principle)
里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。
3、依赖倒转原则(Dependence Inversion Principle)
这个是开闭原则的基础,具体内容:针对接口编程,依赖于抽象而不依赖于具体。
4、接口隔离原则(Interface Segregation Principle)
这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。
5、迪米特法则(最少知道原则)(Demeter Principle)
为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。
6、合成复用原则(Composite Reuse Principle)
原则是尽量使用合成/聚合的方式,而不是使用继承。
三、设计模式的三大类
总体来说设计模式分为三大类:
创建型模式(5种):工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
设计模式之间的关系如下图所示:
>>设计模式根据作用范围来分:
根据模式是主要用于类上还是主要用于对象上来分,这种方式可分为类模式和对象模式两种。
- 类模式:用于处理类与子类之间的关系,这些关系通过继承来建立,是静态的,在编译时刻便确定下来了。工厂方法、(类)适配器、模板方法、解释器属于该模式。
- 对象模式:用于处理对象之间的关系,这些关系可以通过组合或聚合来实现,在运行时刻是可以变化的,更具动态性。
范围\目的 | 创建型模式 | 结构型模式 | 行为型模式 |
---|---|---|---|
类模式 | 工厂方法 | (类)适配器 | 模板方法、解释器 |
对象模式 | 单例 原型 抽象工厂 建造者 |
代理 (对象)适配器 桥接 装饰 外观 享元 组合 |
策略 命令 职责链 状态 观察者 中介者 迭代器 访问者 备忘录 |
四、Java的23种设计模式
创建型模式(5种):用于描述“怎样创建对象”,它的主要特点是“将对象的创建与使用分离”。
A、单例模式(Singleton)
单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。
这样的模式有几个好处:
- 某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
- 省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
- 有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。
优点:只有一个实例,节约了内存资源,提高了系统性能
缺点:
没有抽象层,不能扩展
职责过重,违背了单一性原则
首先我们写一个简单的单例类:
public class Singleton {
/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
private static Singleton instance = null;
/* 私有构造方法,防止被实例化 */
private Singleton() {
}
/* 静态工程方法,创建实例 */
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
public Object readResolve() {
return instance;
}
}
这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:
public static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:
public static Singleton getInstance() {
if (instance == null) {
synchronized (instance) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:
①:A、B线程同时进入了第一个if判断
②:A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
③:由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。
④:B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
⑥:此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。
所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:
private static class SingletonFactory{
private static Singleton instance = new Singleton();
}
public static Singleton getInstance(){
return SingletonFactory.instance;
}
实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:
public class Singleton {
/* 私有构造方法,防止被实例化 */
private Singleton() {
}
/* 此处使用一个内部类来维护单例 */
private static class SingletonFactory {
private static Singleton instance = new Singleton();
}
/* 获取实例 */
public static Singleton getInstance() {
return SingletonFactory.instance;
}
/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
public Object readResolve() {
return getInstance();
}
}
其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:
public class SingletonTest {
private static SingletonTest instance = null;
private SingletonTest() {
}
private static synchronized void syncInit() {
if (instance == null) {
instance = new SingletonTest();
}
}
public static SingletonTest getInstance() {
if (instance == null) {
syncInit();
}
return instance;
}
}
考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。
public class SingletonTest {
private static SingletonTest instance = null;
private Vector properties = null;
public Vector getProperties() {
return properties;
}
private SingletonTest() {
}
private static synchronized void syncInit() {
if (instance == null) {
instance = new SingletonTest();
}
}
public static SingletonTest getInstance() {
if (instance == null) {
syncInit();
}
return instance;
}
public void updateProperties() {
SingletonTest shadow = new SingletonTest();
properties = shadow.getProperties();
}
}
通过单例模式的学习告诉我们:
- 单例模式理解起来简单,但是具体实现起来还是有一定的难度。
- synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。
到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?
首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)
其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。
再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。
最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!
拓展:多例设计模式
单例设计模式只留下一个类的一个实例化对象,而多例设计模式,会定义出多个对象。例如:定义一个表示星期的操作类,这个类的对象只能有7个实例化对象(星期一 ~ 星期日);定义一个表示性别的类,只能有2个实例化对象(男、女);定义一个表示颜色的操作类,只能有3个实例化对象(红、绿、蓝)。这种情况下,这样的类就不应该由用户无限制地去创造实例化对象,应该只使用有限的几个,这个就属于多例设计模式。不管是单例设计模式还是多例设计模式,有一个核心不可动摇,即构造器方法私有化。
class Sex{
private String title;
private static final Sex MALE = new Sex("男");
private static final Sex FEMALE = new Sex("女");
private Sex(String title){ //构造器私有化
this.title = title;
}
public String toString(){
return this.title;
}
public static Sex getInstance(int ch){
switch(ch){
case 1:
return MALE;
case 2:
return FEMALE;
default:
return null;
}
}
}
public class TestDemo{
public static void main(String args[]){
Sex sex = Sex.getInstance(2);
System.out.println(sex);
}
}
==========程序执行结果=========
女
B、工厂方法模式(Factory Method)
工厂方法模式分为三种:
1、普通工厂模式,
就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:
public class MailSender implements Sender {
@Override
public void Send() {
System.out.println("this is mailsender!");
}
}
举例如下:(我们举一个发送邮件和短信的例子)
首先,创建二者的共同接口:
public interface Sender {
public void Send();
}
其次,创建实现类:
public class