二叉树详解(1)

news2024/9/23 5:34:00

文章目录

  • 目录
    • 1. 树的概念及结构
      • 1.1 树的相关概念
      • 1.2 树的表示
      • 1.3 树在实际中的运用(表示文件系统的目录树结构)
    • 2. 二叉树的概念及结构
      • 2.1 概念
      • 2.2 特殊的二叉树
      • 2.3 二叉树的存储结构
    • 3. 二叉树的顺序结构及实现
      • 3.1 二叉树的顺序结构
      • 3.2 堆的概念及结构
      • 3.3 堆的实现
      • 3.4 堆的应用
        • 3.4.1 堆排序
        • 3.4.2 TOP-K问题

目录

  • 树的概念及结构
  • 二叉树的概念及结构
  • 二叉树的顺序结构及实现
  • 二叉树链式结构的实现

1. 树的概念及结构

1.1 树的相关概念

树

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点(没有孩子的节点)

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点(亲兄弟)

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推

注:数组的下标从零开始是因为要和指针更好的匹配:a[i] = *(a + i);而在这里我们更习惯把根定义为第一层,当然,定义成第零层也是可以的

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林(并查集)

注: 现在我们看到就要把它进行拆分成:根和n棵子树(n>=0);树是按照递归定义的,也就是说子树也要按照这个方式进行拆分

树与非树

也就是说树是不能有环的,有环的就称为图。

通过以上学习,我们总结一下树的概念:树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 有一个特殊的结点,称为根结点,根节点没有前驱结点。
  • 除根节点外,其余结点被分成 M(M>0) 个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 因此,树是递归定义的。

1.2 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系

//树的度是N

#define N 6

struct TreeNode
{
	int val;
	struct TreeNode* subA[N];
};

但是这样定义太浪费空间了,因为并不是每个节点的度都达到了N。

因此,我们可以借助顺序表来解决这个问题:

struct TreeNode
{
	int val;

	//顺序表
	struct TreeNode** subA;
	int size;
	int capacity;
};

但这种表示也不是最常见的,接下来我们介绍一种新的定义方式:

//左孩子 右兄弟
struct TreeNode
{
	int val;
	struct TreeNode* leftChild;
	struct TreeNode* nextBrother;
};

第一个指针永远指向从左往右数的第一个孩子,第二个指针指向它自己右边的亲兄弟。

那么一个父亲如何找到他所有的孩子呢?
左孩子右兄弟表示法

其实还有一种表示方式,这里我们先了解一下就可以:
双亲表示法
用数组存储数据,数组的每个元素都是一个结构体,每个结构体包含节点的值和父亲所在的下标;这种表示法可以用来表示森林。

它的物理结构:数组(内存中如何存储)

逻辑结构:森林(想象出来的)

1.3 树在实际中的运用(表示文件系统的目录树结构)

数据结构分为表示形存储形这种数据结构就属于表示形,主要是用来表示某种结构。

Linux树状目录结构

在Windows系统中也是一样的,比如C盘作为根,里面包含了很多文件夹,每个文件夹中又包含了很多文件夹,它们的底层就是通过树这种数据结构来实现的。

2. 二叉树的概念及结构

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

二叉树

从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注: 对于任意的二叉树都是由以下几种情况复合而成的:
二叉树的不同情况


二叉树单纯存储数据是没啥价值,不如顺序表/链表,那我们为什么要学二叉树呢?
搜索二叉树
但是它也存在不足,在极端情况下可能会变成这样:
二叉树的极端情况

因此,我们后面还要学AVL树和红黑树;同时还会有多叉树:M阶B树,多用于数据库的引擎

2.2 特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树;也就是说,如果一个二叉树的层数为K,且结点总数是 2的k次方 - 1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树,要注意的是满二叉树是一种特殊的完全二叉树。
    特殊的二叉树

简单来说: 满二叉树就是前 n - 1 层都是满(度为2),最后一层是叶子结点;完全二叉树就是前 n - 1 层都是满,最后一层不一定满,但要求从左到右的节点是连续的。

2.3 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  1. 顺序存储
    顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树
    二叉树的顺序存储

  2. 链式存储
    二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面我们学到高阶数据结构如红黑树等会用到三叉链。
    二叉树的链式存储

3. 二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费;而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段

3.2 堆的概念及结构

堆

3.3 堆的实现

我们先以小堆为例(大堆就是 ‘<’ 改成 ‘>’)

typedef int HPDataType;

typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

堆的插入:
堆的插入

void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType* tmp = *px;
	*px = *py;
	*py = tmp;
}

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;

	//while (parent >= 0)//这样写是不对的,parent永远都是 >= 0 的
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void HPPush(HP* php, HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		size_t newCapacity = 0 == php->capacity ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);

		if (NULL == tmp)
		{
			perror("realloc fail");
			return;
		}

		php->a = tmp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

堆的删除:
堆的删除(1)
堆的删除(2)

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;

	while (child < n)
	{
		//假设法,选出左右孩子中小的那个孩子
		if (child + 1 < n && a[child + 1] < a[child])
		{
			++child;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HPPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

完整代码:

//Heap.h

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>

typedef int HPDataType;

typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

void HPInit(HP* php);
void HPDestroy(HP* php);

//插入后保持数据是堆
void HPPush(HP* php, HPDataType x);

HPDataType HPTop(HP* php);

//删除堆顶的数据
void HPPop(HP* php);

bool HPEmpty(HP* php);
//Heap.c

#include "Heap.h"

void HPInit(HP* php)
{
	assert(php);

	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HPDestroy(HP* php)
{
	assert(php);

	free(php->a);
	php->a = NULL;
	php->capacity = 0;
	php->size = 0;
}

void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType* tmp = *px;
	*px = *py;
	*py = tmp;
}

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;

	//while (parent >= 0)//这样写是不对的,parent永远都是 >= 0 的
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

//时间复杂度:logN
void HPPush(HP* php, HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		size_t newCapacity = 0 == php->capacity ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);

		if (NULL == tmp)
		{
			perror("realloc fail");
			return;
		}

		php->a = tmp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

HPDataType HPTop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	return php->a[0];
}

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;

	while (child < n)
	{
		//假设法,选出左右孩子中小的那个孩子
		if (child + 1 < n && a[child + 1] < a[child])
		{
			++child;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

//时间复杂度:logN
void HPPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

bool HPEmpty(HP* php)
{
	assert(php);

	return 0 == php->size;
}
//Test.c

#include "Heap.h"

int main()
{
	//如何把以下数组变成一个堆
	//int a[] = { 50, 100, 70, 65, 60, 32 };
	int a[] = { 60, 70, 65, 50, 32, 100 };

	HP hp;
	HPInit(&hp);

	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		HPPush(&hp, a[i]);
	}

	//printf("%d\n", HPTop(&hp));
	//HPPop(&hp);
	//printf("%d\n", HPTop(&hp));
	
	while (!HPEmpty(&hp))
	{
		printf("%d\n", HPTop(&hp));
		HPPop(&hp);
	}

	HPDestroy(&hp);
	
	return 0;
}

堆插入和删除的时间复杂度:
堆插入和删除的时间复杂度


如果一开始就给了一个数组,如何给它初始化成堆呢?

  1. 模拟插入,向上调整建堆
void HPInitArray(HP* php, HPDataType* a, int n)
{
	assert(php);

	php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);

	if (NULL == php->a)
	{
		perror("malloc fail");
		return;
	}

	memcpy(php->a, a, sizeof(HPDataType) * n);
	php->capacity = php->size = n;

	//向上调整,建堆 O(N*logN)
	for (int i = 1; i < php->size; i++)
	{
		AdjustUp(php->a, i);
	}
}

时间复杂度:
向上调整建堆的时间复杂度

总结: 节点数量越多的时候,调整次数也越多

  1. 向下调整建堆

向下调整建堆的前提是它的左右子树都已经是大/小堆了,所有不能从第一个节点开始向下调整,而是从最后一个节点开始向下调整,但是最后一层是叶子节点,不需要调整就已经是堆了,所有就从倒数第一个非叶子节点开始向下调整。
向下调整建堆

void HPInitArray(HP* php, HPDataType* a, int n)
{
	assert(php);

	php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);

	if (NULL == php->a)
	{
		perror("malloc fail");
		return;
	}

	memcpy(php->a, a, sizeof(HPDataType) * n);
	php->capacity = php->size = n;

	//向下调整,建堆 O(N)
	for (int i = (php->size - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(php->a, php->size, i);
	}
}

时间复杂度:
向下调整建堆的时间复杂度

总结: 节点数量多的时候,调整次数少


因此,直接给一个数组让它建堆比一个一个插入,向上调整建堆效率要高。

int main()
{
	//如何把以下数组变成一个堆
	//int a[] = { 50, 100, 70, 65, 60, 32 };
	int a[] = { 60, 70, 65, 50, 32, 100 };

	HP hp;
	HPInitArray(&hp, a, sizeof(a) / sizeof(int));

	while (!HPEmpty(&hp))
	{
		printf("%d\n", HPTop(&hp));
		HPPop(&hp);
	}

	HPDestroy(&hp);

	return 0;
}

3.4 堆的应用

3.4.1 堆排序

根据我们上面所讲的,我们可以很容易想到这种写法:

void HeapSort(int* a, int n)
{
	HP hp;
	HPInitArray(&hp, a, n);
	int i = 0;

	while (!HPEmpty(&hp))
	{
		a[i++] = HPTop(&hp);
		HPPop(&hp);
	}

	HPDestroy(&hp);
}

int main()
{
	int a[] = { 60, 70, 65, 50, 32, 100 };

	HeapSort(a, sizeof(a) / sizeof(int));

	return 0;
}

但是这样写有两个问题:

  1. 需要堆的数据结构
  2. 空间复杂度 O(N)

可以这样改进:
堆排序

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;

	while (child < n)
	{
		//假设法,选出左右孩子中小的那个孩子
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}


//升序,建大堆还是小堆呢?大堆
//O(N * logN)
void HeapSort(int* a, int n)
{
	//a数组直接建堆 O(N)
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}

	//O(N * logN)
	int end = n - 1;

	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

int main()
{
	int a[] = { 3, 6, 1, 5, 8, 9, 2, 7, 4, 0 };

	HeapSort(a, sizeof(a) / sizeof(int));

	return 0;
}

之前在写堆的代码时,可能会存在这样的疑问:为什么向下调整函数的参数不传堆的结构体指针,而是只传数组的地址进去呢?

这里就体现出来了:因为这个函数在堆排序的时候还需要用到,如果传了堆的结构体指针,那这里就不好复用了。(这个函数不仅仅用来服务堆这个数据结构,还需要服务于堆排序)

3.4.2 TOP-K问题

100亿个数据,找出最大的前10个(N个数据里面找最大的前K个,N远大于K)

注: 如果N和K差不多大,可以直接排序解决

最容易想到的方法就是把这100亿个数据建一个大堆,每次找出最大的,然后将它删掉,再找次大的,一直循环10次。

但是这种方法存在问题:

  1. 时间复杂度:N + K * logN
  2. 最主要的问题是空间复杂度,堆底层就是个数组,它开不出这么大的一个数组,内存空间不够

因此,我们就要换一种方法:
TOP-K问题

void CreateNDate()
{
	//造数据
	int n = 100000;
	srand((unsigned int)time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");

	if (NULL == fin)
	{
		perror("fopen error");
		return;
	}

	for (int i = 0; i < n; ++i)
	{
		//随机数系统规定只有三万多个
		//+i 是为了让数据的随机性更大一点
		//%1000000 是为了让数据在1000000以内,这样我们可以手动让几个数据大于1000000,以此来验证我们程序的正确性
		int x = (rand() + i) % 1000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

void topk()
{
	printf("请输入k:>");
	int k = 0;
	scanf("%d", &k);

	const char* file = "data.txt";
	FILE* fout = fopen(file, "r");

	if (NULL == fout)
	{
		perror("fopen error");
		return;
	}

	int* minheap = (int*)malloc(sizeof(int) * k);

	if (NULL == minheap)
	{
		perror("malloc error");
		return;
	}

	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &minheap[i]);
	}

	//建k个数据的小堆
	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(minheap, k, i);
	}

	int x = 0;

	while (fscanf(fout, "%d", &x) != EOF)
	{
		//读取剩余数据,比堆顶的值大,就替换它进堆
		if (x > minheap[0])
		{
			minheap[0] = x;
			AdjustDown(minheap, k, 0);
		}
	}

	for (int i = 0; i < k; i++)
	{
		printf("%d ", minheap[i]);
	}

	fclose(fout);
	free(minheap);
	minheap = NULL;
}

int main()
{
	CreateNDate();
	topk();

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2041888.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

监控电脑屏幕被拍照的原理是什么?如此有趣的电脑防偷窥知识,你一学就会!

“防身立志言为本&#xff0c;修业安命行为先”。在数字化时代&#xff0c;保护个人隐私与信息安全已成为我们不可忽视的重要课题。 当我们坐在电脑前工作、学习或娱乐时&#xff0c;是否曾想过&#xff0c;屏幕上的内容也可能成为他人窥探的目标&#xff1f; 今天&#xff0c…

【NI-DAQmx入门】基于TSN的以太网NI CompactDAQ机箱(9185/9189)

软件兼容性&#xff1a; WIN10 64bit&#xff1a; LabVIEW 2019 32bit NI-DAQmx 19.6 NI-Sync 19.5&#xff08;TSN&#xff09; WIN11 64bit&#xff1a; LabVIEW 2022Q3 32bit NI-DAQmx 2022Q3 32bit NI-TimeSync 2022 Q4&#xff08;TSN&#xff09; 如果要启用TSN&…

力扣 | 递增子序列 | 动态规划 | 最长递增子序列、最长递增子序列的个数、及其变式

文章目录 一、300. 最长递增子序列二、673. 最长递增子序列的个数三、变式1、646. 最长数对链2、1218. 最长定差子序列3、1027. 最长等差数列4、354. 俄罗斯套娃信封问题5、1964. 找出到每个位置为止最长的有效障碍赛跑路线 四、2024复旦计科夏令营机试 最长递增子序列&#xf…

Docker容器逃逸

Docker容器逃逸 Privileged 特权模式容器逃逸 | T Wiki (teamssix.com)https://wiki.teamssix.com/cloudnative/docker/docker-privileged-escape.html 1、云原生-Docker 安全-容器逃逸&特权模式 2、云原生-Docker 安全-容器逃逸&挂载 Procfs 3、云原生-Docker 安…

Linux云计算 |【第二阶段】OPERATION-DAY3

主要内容&#xff1a; Nginx调度器&#xff08;7层代理服务器Http、Nginx&#xff0c;4层代理服务器SSH&#xff09;、配置upstream服务器集群池属性&#xff0c;HTTP错误代码&#xff0c;Nginx优化&#xff08;自定义404错误代码、状态页面显示、ab压力测试、客户端开启缓存、…

在HMI项目中,传感器扮演的角色是啥?一文告诉你。

说到HMI项目&#xff0c;就绕不开物联网&#xff0c;说到物联网就不得不说传感器&#xff0c;本文大千UI工场带你详细了解传感器的价值。 一、传感器的价值 在HMI&#xff08;Human-Machine Interface&#xff09;项目中&#xff0c;传感器扮演着收集和监测实时数据的角色。传…

Tire树-存储与查找

#include <iostream>using namespace std;const int N 100010; // 定义常量 N 表示字典树节点的最大数量int son[N][26], cnt[N], idx; // son数组存储字典树&#xff0c;cnt数组记录某个字符串结束时的节点个数&#xff0c;idx表示当前字典树的节点总数 char str[N];…

数据结构之----堆

一、介绍 堆是一棵完全二叉树。堆又分为大堆&#xff0c;小堆两种结构。 大堆&#xff1a;所有的父节点都比它的子节点要大。 小堆&#xff1a;所有的父节点都比它的子节点要小。 二、堆的向上调整算法 比如要建一个小堆 思路&#xff1a;将父节点和子节点比较&#xff0c…

驰骋BPM RunSQL_Init SQL注入漏洞复现

0x01 产品简介 驰骋BPM系统由济南驰骋信息技术有限公司研发,具有悠久的历史和丰富的行业经验。其工作流引擎CCFlow自2003年开始研发,是国内知名的老牌工作流引擎,在BPM领域拥有广泛的研究群体与应用客户群。统提供.net与java两个版本,且两个版本的代码结构、数据库结构、设…

手写数字识别实战

全部代码&#xff1a; import matplotlib.pyplot import torch from torch import nn # nn是完成神经网络相关的一些工作 from torch.nn import functional as F # functional是常用的一些函数 from torch import optim # 优化的工具包import torchvision from matplotlib …

简单回归问题实战

数据表&#xff1a;链接: https://pan.baidu.com/s/1sSz7F_yf_JeumXcP4EjE5g?pwd753f 提取码: 753f 核心流程&#xff1a; import numpy as np # 计算误差函数 points是数据集中数据的位置 def compute_error_for_line_given_points(b,w,points):totalError0for i in range(0…

【FreeRTOS】队列的本质

目录 0 前言1. 数据传输的方法1.1 任务之间如何传输数据1.2 队列的本质1.3 操作队列的三个步骤 2 队列2.1 举例说明2.2 唤醒流程2.2.1 情况12.2.2 情况2 3 总结 0 前言 学习视频&#xff1a; 【FreeRTOS入门与工程实践 --由浅入深带你学习FreeRTOS&#xff08;FreeRTOS教程 基…

Haproxy基于cookie的会话保持

cookie value&#xff1a;为当前server指定cookie值&#xff0c;实现基于cookie的会话黏性&#xff0c;相对于基于 source 地址hash 调度算法对客户端的粒度更精准&#xff0c;但同时也加大了haproxy负载&#xff0c;目前此模式使用较少&#xff0c; 已经被session 共享服务器代…

亚信安慧AntDB-M聚合下推—加速你的数据分析查询

摘 要 在业务系统中&#xff0c;一般的事务型SQL语句涉及到的数据记录数不会很多&#xff0c;即便涉及到多个数据节点&#xff0c;基于AntDB-M的优化&#xff0c;访问也都很快。但是统计分析型SQL语句往往涉及到大量数据&#xff0c;甚至包括全表数据&#xff0c;基本都会覆盖…

3D 技术对我们的生活有哪些影响?

3D技术&#xff0c;也称为三维技术&#xff0c;是指利用计算机生成或处理三维数据的技术。它在多个领域对我们的生活产生了深远的影响&#xff1a; 1、制造业&#xff1a;3D技术使得个性化和定制化生产成为可能&#xff0c;大幅缩短了产品从设计到制造的时间&#xff0c;降低了…

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

目录 一、引言 二、视频分类&#xff08;video-classification&#xff09; 2.1 概述 2.2 技术原理 2.3 应用场景 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 2.4 pipeline实战 2.5 模型排名 三、总结 一、引言 pipeline&#x…

网络编程 8/15 基于UDP多人聊天室

//客户端代码 #include <myhead.h> struct msgType {char type; // 消息类型L:登录&#xff0c;Q:退出&#xff0c;C:聊天char usrName[20];char msgText[1024]; }; #define SER_PORT 6666 // 服务器端口 #define SER_IP "192.168.2.161" // 服务器IP…

SpringBoot解决创建项目无法选择JDK8和JDK11

文章目录 解决方案1解决方案2 在创建SpringBoot项目的时候&#xff0c;我们发现只能勾选JDK17以上的。并且官方没有提供2.X版本&#xff0c;但是目前大多数企业使用的还是 springboot 初始化的网址&#xff0c;我们一般使用的是官方的网址。 解决方案1 就选择jdk17和spring…

BIM+GIS在管廊机电监控与运维管控系统中的应用

研究背景 根据《GB50838-2015城市综合管廊工程技术规范》及《GBT51274-2017城镇综合管廊监控与报警系统工程技术标准》的相关条款要求&#xff0c;城市综合管廊监控报警系统用于对综合管廊内的设备运行状态及参数、实时环境信息、出入口状态等进行全方位在线监控&#xff0c;保…

java基础概念17-static

一、 static的作用 static修饰的变量、方法被类的所有实例共享。 示例&#xff1a; static用于声明属于类本身的变量、方法&#xff0c;而不是类的某个特定对象的。 二、static内存图 静态区中的成员变量&#xff0c;对象共享&#xff0c;内存中只有一份&#xff0c;谁要用&am…