1.树
树(Tree)非线性数据结构,它是n(n≥0)个节点的有限集合,它满足两个条件 :
有且仅有一个特定的称为根(Root)的节点;
其余的节点可以分为m(m≥0)个互不相交的有限集合T1、T2、……、Tm,其中每一个集合又是一棵树,并称为其根的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
树的表示方法 :树形表示法、目录表示法。
- 一个节点的子树的个数称为该节点的度数。
- 一棵树的度数是指该树中节点的最大度数。
- 度数为零的节点称为树叶或终端节点。
- 度数不为零的节点称为分支节点。
- 除根节点外的分支节点称为内部节点。
森林
- 若树中每个节点的各个子树的排列为从左到右,不能交换,即兄弟之间是有序的,则该树称为有序树。
- m(m≥0)棵互不相交的树的集合称为森林。
- 树去掉根节点就成为森林,森林加上一个新的根节点就成为树。
2.树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,
如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子
兄弟表示法。
2.1兄弟表示法
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
2.2双亲表示法
3.二叉树
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子
树和右子树的二叉树组成。
二叉树特点
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒。
3.1特殊的二叉树
3.1.1满二叉树
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
3.1.2完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。最后一层是连续的,前面的k-1层为满的。 满二叉树是一种特殊的完全二叉树。完全二叉树度为1 的,最多有一个。
3.2二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
- 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.(等比数列求和1+2+2^2+...+2^h)
- 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1.
- 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=LogN.
3.3二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
3.3.1顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树
会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
在数组中: 父亲下标为i,左孩子下标为2*i+1,右孩子下标为2*i+2.
孩子下标为i,父亲下标为(i-1)/2.(不论是左还是右,下标都为整数)
3.3.2链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的
方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩
子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* pLeft; // 指向当前节点左孩子
struct BinTreeNode* pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode比特就业课
{
struct BinTreeNode* pParent; // 指向当前节点的双亲
struct BinTreeNode* pLeft; // 指向当前节点左孩子
struct BinTreeNode* pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
4.二叉树链式结构的实现
所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访
问结点所做的操作依赖于具体的应用问 题。 遍历是二叉树上最重要的运算之一,是二叉树上进行
其它运算之基础。
4.1二叉树链式结构的遍历
- 前序/中序/后序的递归结构遍历:是根据访问结点操作发生位置命名,为深度优先。
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——根->左子树->右子树。
- LNR:中序遍历(Inorder Traversal)——左子树->根->右子树。
- LRN:后序遍历(Postorder Traversal)——左子树->右子树->根。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
- 层序遍历:设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。为广度优先。
typedef int BTDataType;
typedef struct BinaryTreeNode
{
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
BTDataType data;
}BTNode;
BTNode* BuyBTNode(BTDataType x)
{
BTNode* node = (BTNode*)malloc(sizeof(BTNode));
if (node == NULL)
{
printf("malloc fail\n");
exit(-1);
}
node->data = x;
node->left = node->right = NULL;
return node;
}
BTNode* CreatBinaryTree()
{
BTNode* node1 = BuyBTNode(1);
BTNode* node2 = BuyBTNode(2);
BTNode* node3 = BuyBTNode(3);
BTNode* node4 = BuyBTNode(4);
BTNode* node5 = BuyBTNode(5);
BTNode* node6 = BuyBTNode(6);
node1->left = node2;
node1->right = node4;
node2->left = node3;
node4->left = node5;
node4->right = node6;
return node1;
}
上述代码创建一个二叉树,如下图所示
4.1.1前序遍历(A->B->D->NULL->C->F->G)
void PrevOrder(BTNode* root) {
if (root == NULL) {
printf("NULL ");
return;
}
printf("%d ", root->data);
PrevOrder(root->left);
PrevOrder(root->right);
}
4.1.2中序遍历(D->B->NULL->A->F->C->G)
void InOrder(BTNode* root) {
if (root == NULL){
printf("NULL ");
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
4.1.3后序遍历 (D->NULL->B->F->G->C->A)
void PosOrder(BTNode* root) {
if (root == NULL){
printf("NULL ");
return;
}
PosOrder(root->left);
PosOrder(root->right);
printf("%d ", root->data);
}
4.1.4二叉树的结点个数
int BTreeSize(BTNode* root) {
return root == NULL ? 0 :
BTreeSize(root->left)
+ BTreeSize(root->right) + 1;
}
4.1.5第k层的节点的个数,k >= 1
int BTreeKLevelSize(BTNode* root, int k)
{
assert(k >= 1);
if (root == NULL)
return 0;
if (k == 1)
return 1;
return BTreeKLevelSize(root->left, k - 1)
+ BTreeKLevelSize(root->right, k - 1);
}
4.1.6求二叉树的深度
int BTreeDepth(BTNode* root)
{
if (root == NULL)
return 0;
int leftDepth = BTreeDepth(root->left);
int rightDepth = BTreeDepth(root->right);
return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}
4.1.7二叉树查找值为x的结点
BTNode* BTreeFind(BTNode* root, BTDataType x)
{
if (root == NULL)
return NULL;
if (root->data == x)
return root;
BTNode* ret1 = BTreeFind(root->left, x);
if (ret1)
return ret1;
//return BTreeFind(root->right, x);
BTNode* ret2 = BTreeFind(root->right, x);
if (ret2)
return ret2;
return NULL;
}
4.1.8二叉树销毁
void BTreeDestory(BTNode* root)
{
if (root == NULL)
{
return;
}
BTreeDestory(root->left);
BTreeDestory(root->right);
free(root);
}
4.1.9层序遍历(需要队列进行入队和出队)
void LevelOrder(BTNode* root)
{
Queue q;
QueueInit(&q);
if (root)
{
QueuePush(&q, root);
}
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
printf("%d ", front->data);
if (front->left)
{
QueuePush(&q, front->left);
}
if (front->right)
{
QueuePush(&q, front->right);
}
}
printf("\n");
QueueDestory(&q);
}
4.1.10判断二叉树是否是完全二叉树
// 判断二叉树是否是完全二叉树
bool BTreeComplete(BTNode* root)
{
Queue q;
QueueInit(&q);
if (root)
QueuePush(&q, root);
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
if (front == NULL)
break;
QueuePush(&q, front->left);
QueuePush(&q, front->right);
}
while (!QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
QueuePop(&q);
// 空后面出到非空,那么说明不是完全二叉树
if (front)
{
QueueDestory(&q);
return false;
}
}
QueueDestory(&q);
return true;
}