C语言中的整数和浮点数在内存中存储

news2024/11/24 9:21:10

在C语言中,整形和浮点型数据的存储方式有所不同。

对于整形数据,C语言使用补码表示法存储。补码表示法可以方便地进行二进制加减法运算,同时能够简化硬件设计。对于正整数,其补码与原码相同,即直接存储其二进制表示。对于负整数,其补码表示为:将原码的符号位保持不变,其余位取反,然后加1。例如,一个8位的有符号整数-5的补码表示为11111011。

对于浮点型数据,C语言遵循IEEE 754标准存储。该标准定义了单精度(float)和双精度(double)两种类型。以单精度为例,它占用32位,分为三部分:1位符号位,8位指数位和23位尾数位。符号位表示正负,指数位表示浮点数的指数部分,尾数位表示浮点数的小数部分。在存储时,首先将浮点数转换为科学计数法,然后将指数部分和小数部分转换为二进制表示,再根据IEEE 754标准进行存储。例如,浮点数3.14可以表示为1.57*2^1,其中1.57为尾数部分,1为指数部分。在存储时,指数部分需要加上一个偏移值(对于单精度浮点数,偏移值为127),然后与符号位和尾数位一起存储。

通过以上方式,C语言能够高效地存储和处理整形和浮点型数据。

而本文章将详细介绍以上规则

1. 整数在内存中的存储

整数的2进制表⽰⽅法有三种,即 原码、反码和补码
三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,⽽数值位最⾼位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表⽰⽅法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
对于整形来说:数据存放内存中其实 存放的是补码
为什么呢?
在计算机系统中,数值⼀律⽤补码来表⽰和存储。
原因在于,使⽤补码,可以将符号位和数值域统⼀处理;
同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的,不需要额外的硬件电路

2. ⼤⼩端字节序和字节序

当我们了解了整数在内存中存储后,我们在 vs2022上 调试看⼀个细节:
# include <stdio.h>
int main ()
{
int a = 0x11223344 ;
return 0 ;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

2.1 什么是⼤⼩端?

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存在内存的低地址处。
⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存在内存的⾼地址处。
       简单的来说就是 ⼤端字节序(以字节为最小单位)是我们生活中的书写方式,而小 字节序则是相反的。
上述概念需要记住,⽅便分辨⼤⼩端。

2.2 为什么有⼤⼩端?

为什么会有⼤⼩端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存储模式。
例如:⼀个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么
0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在⾼地址中,即 0x0011 中。⼩端模式,刚好相反。我们常⽤的 X86 结构是⼩端模式,⽽
KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是⼤端模式还是⼩端模式。

2.3 ⼤⼩端字节序和字节序判断

下面是一道百度笔试题

请简述⼤端字节序和⼩端字节序的概念,设计⼀个⼩程序来判断当前机器的字节序。
//编写判断大小端程序
int main()
{
	int a=0x11223344;
	char* p = (char*)&a;
	if (*p == 11)
	{
		printf("大端字节");
	}
	else
	printf("小端字节");
	return 0;
}

3. 浮点数在内存中的存储

常⻅的浮点数:3.14159、1E10等,浮点数家族包括: float double long double 类型。
浮点数表⽰的范围: float.h 中定义

 3.1题⽬

#include <stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}

运行结果为

3.2 浮点数的存储

上⾯的代码中, num *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式: V   =  (−1) ^ S  * M  ∗  2^E
(−1)^ S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
M 表⽰有效数字,M是⼤于等于1,⼩于2的
2^  E 表⽰指数位
eg:
⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
3.2.1 浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
有效数字M
前⾯说过, 1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬ 的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
指数E
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道, 科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数 ,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001
3.2.2 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
0 00000000 00100000000000000000000
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s)
0 11111111 00010000000000000000000

3.3 题⽬解析

下⾯,让我们回到⼀开始的题目
先看第1环节,为什么 9 还原成浮点数,就成了 0.000000 ? 9以整型的形式存储在内存中,得到如下⼆进制序列:
  0000 0000 0000 0000 0000 0000 0000 1001
⾸先,将 9 的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后⾯8位的指数
E=00000000
最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
显然,V是⼀个很⼩的接近于0的正数,所以⽤⼗进制⼩数表⽰就是0.000000。
再看第2环节,浮点数9.0,为什么整数打印是 1091567616
⾸先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3
所以: 9.0  =  (−1) ^  0 * (1.001)  ∗  2^3
那么,第⼀位的符号位S=0,有效数字M等于001后⾯再加20个0,凑满23位,指数E等于3+127=130, 即10000010
所以,写成⼆进制形式,应该是S+E+M,即
0 10000010 001 0000 0000 0000 0000 0000
这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是
1091567616

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2039575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring 循环依赖解决方案

文章目录 1. 循环依赖的产生2. 循环依赖的解决模型3. 基于setter/Autowired 的循环依赖1_编写测试代码2_初始化 Cat3_初始化 Person4_ 回到 Cat 的创建流程5_小结 4. 基于构造方法的循环依赖5. 基于原型 Bean 的循环依赖6. 引人AOP的额外设计7. 总结 IOC 容器初始化bean对象的逻…

如何对open62541.h/open62541.c的UA_Client进行状态(在线/掉线)监控

文章目录 1.背景2.解决方案3.异步连接4.注意事项4.1.线程问题4.2.UA_Client_run_iterate 1.背景 目前在利用open62541.h/open62541.c编写了一个与PLC进行OPCUA通讯的上位机程序。 上位机这边会定时对PLC的某个opcua变量进行写操作。但是假如PLC离线或者说拔掉网线&#xff0c;…

【多线程-从零开始-柒】单例模式,饿汉和懒汉模式

单例模式&#xff1a;是一种设计模式 设计模式&#xff0c;类似于“棋谱”&#xff0c;就是固定套路&#xff0c;针对一些特定的场景&#xff0c;给出一些比较好的解决方法只要按照设计模式来写代码&#xff0c;就可以保证代码不会太差&#xff0c;保证代码的下限 设计模式 设…

8月8日学习笔记 python基础

1.环境 python2&#xff0c; python3 yum list installed|grep python yum -y install python3 # 最新安装3.12可以使⽤源码安装&#xff0c;教程是在第⼀个星期pdf python3 --version 3.6.8 #进⼊到python的编辑状态 python3 # 如果直接输⼊python&#xff0c;也会进⼊到pyth…

MySQL基础练习题33-有趣的电影

目录 题目 准备数据 分析数据 总结 题目 找出所有影片描述为 非 boring (不无聊) 的并且 id 为奇数 的影片。 返回结果按 rating 降序排列。 准备数据 ## 创建库 create database db; use db;## 创建表 Create table If Not Exists cinema (id int, movie varchar(255),…

php根据截止时间计算剩余的时间,并且在剩余时间不足1天时仅显示小时数

//获取政策库文章public function getIndexZckList(){$fl_id = input(fl_id);if(empty(

C++:list类(迭代器类)

前言 list是链表的意思 它属于链表中的带头双向循环链表 建议先掌握数据结构中的链表 C数据结构&#xff1a;单链表-CSDN博客 C数据结构&#xff1a;双向链表&#xff08;带头循环&#xff09;_c带头双向循环链表-CSDN博客 数据结构 首先我们需要一个链表的节点 templa…

ThinkPHP5漏洞分析之代码执行

漏洞概要 本次漏洞存在于 ThinkPHP 的缓存类中。该类会将缓存数据通过序列化的方式&#xff0c;直接存储在 .php 文件中&#xff0c;攻击者通过精心构造的 payload &#xff0c;即可将 webshell 写入缓存文件。缓存文件的名字和目录均可预测出来&#xff0c;一旦缓存目录可访问…

【张】#12 enum 枚举

enum 枚举定义格式&#xff1a; enum <类型名> {<枚举常量表> }; 枚举其实就是一个整数 enum example {Aa,Bb10,Cc //给Bb赋值为10后&#xff0c;Cc的值会变成11 }; 枚举变量只能使用枚举值&#xff0c;枚举可以赋值给整型&#xff0c;整型不能赋值给枚举 #inc…

掌握Jenkins自动化部署:从代码提交到自动上线的全流程揭秘

Jenkins自动化部署是现代软件开发中不可或缺的一部分&#xff0c;它不仅简化了代码的发布过程&#xff0c;还为整个团队带来了无与伦比的效率和协作力。想象一下&#xff0c;开发者们可以专注于编写高质量的代码&#xff0c;而不是为繁琐的手动部署所烦恼&#xff1b;测试人员能…

力扣高频SQL 50题(基础版)第四十四题之626. 换座位

文章目录 力扣高频SQL 50题&#xff08;基础版&#xff09;第四十四题之626. 换座位626. 换座位题目说明思路分析实现过程准备数据实现方式结果截图 力扣高频SQL 50题&#xff08;基础版&#xff09;第四十四题之626. 换座位 626. 换座位 题目说明 表: Seat --------------…

<数据集>街头摊贩识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;966张 标注数量(xml文件个数)&#xff1a;966 标注数量(txt文件个数)&#xff1a;966 标注类别数&#xff1a;1 标注类别名称&#xff1a;[street-vendor] 序号类别名称图片数框数1street-vendor9662016 使用标注…

Java流程控制02:if选择结构

本节内容教学视频链接&#xff1a;Java流程控制04&#xff1a;if选择结构_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV12J41137hu?p36&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 在Java中&#xff0c;if 选择结构用于根据特定条件执行不同的代码块。 if语句有四…

CRC校验算法详解、C语言实现

一、前言 1.1 CRC算法介绍 CRC&#xff08;Cyclic Redundancy Check&#xff09;校验算法是一种广泛应用于数据通信和存储系统中的错误检测方法&#xff0c;主要用于检测数据在传输过程中是否发生了改变。CRC算法通过计算一个固定长度的校验码&#xff0c;将该校验码附加到原…

Zookeeper使用快速入门:基础命令,wacth监控,权限控制

目录 前置知识 1. 基础命令 未知指令&#xff1a; ls&#xff1a; create&#xff1a; zookeeper中节点有四种类型&#xff0c;分别是&#xff1a; 1. 持久节点&#xff08;Persistent Node&#xff09; 2. 临时节点&#xff08;Ephemeral Node&#xff09; 3. 持久顺序…

进程间通信 ---共享内存

序言 在前一篇文章中&#xff0c;我们介绍了名为 &#x1f449;管道 的进程间通信的方式&#xff0c;该种方式又可分为 匿名管带&#xff0c;命名管道。前者最大的特点就是 仅支持包含血缘关系两进程之间的通信&#xff0c;而后者 支持任意进程间的通信。  在本篇文章中&…

python3.9+wxPython设计的一个简单的计算器

运行环境&#xff1a;python3.9wxPython4.2.1 运行效果&#xff1a; 按下等于号&#xff0c;输出&#xff1a; 按下R键&#xff0c;保留两位小数 键盘布局与逻辑分离&#xff0c;添加删除功能一般功能或修改键盘布局只需要更改词典的顺序即可。添加特殊功能时则需要将队对应的…

【kubernetes】k8s配置资源管理

一、ConfigMap资源配置 ConfigMap保存的是不需要加密配置的信息 ConfigMap 功能在 Kubernetes1.2 版本中引入&#xff0c;许多应用程序会从配置文件、命令行参数或环境变量中读取配置信息。ConfigMap API 给我们提供了向容器中注入配置信息的机制&#xff0c;ConfigMap 可以被…

基于vue框架的CKD电子病历系统nfa2e(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;患者,医生,药品信息,电子病历,临时医嘱,长期医嘱,健康科普 开题报告内容 基于Vue框架的CKD电子病历系统 开题报告 一、选题背景 随着信息技术的飞速发展和医疗信息化的深入推进&#xff0c;电子病历系统&#xff08;Electronic Medic…

SpringBoot事务-调度-缓存

一.Spring Boot中的事务管理 设置事务 Transactional(isolation Isolation.DEFAULT) Transactional(propagation Propagation.REQUIRED) 开启事务 EnableTransactionManagement ​​​​​​​ 1. 开启事务管理 要开启 Spring 的事务管理&#xff0c;你需要在你的 Spring B…