自定义的wordcount
数据处理过程
- 加载jar包
查看后面的pom文件
以上为需要的jar包路径,将其导入至idea中
- Map
package com.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
// K1 V1 K2 V2 的数据类型
public class WMap extends Mapper<LongWritable, Text, Text, IntWritable> {
//Context标识上下文,比如上一节的输入以及下一节的输出,一个JOB可能存在多个MAP和多个REDUCE
@Override
public void map(LongWritable key1, Text value1, Context context)
throws IOException, InterruptedException {
//获取数据,v1是输入
String data = value1.toString();
//逻辑:分词
String[] words = data.split(" ");
//v2是一个集合的形式
//k2和k1的数据类型是相同的,表示一个具体的分类
for (String w : words) {
//这是对下文的编写,即输出
// K2 V2
context.write(new Text(w), new IntWritable(1));
}
}
}
- Reduce
package com.hadoop;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
// K3 V3 K4 V4
public class WReduce extends Reducer<Text, IntWritable, Text,IntWritable>{
// 集合V3
@Override
protected void reduce(Text k3, Iterable<IntWritable> v3, Context context)
throws IOException, InterruptedException {
//求和
int total=0;
for (IntWritable v:v3){
total+=v.get();
}
//输入和输出必须是hadoop支持的类型
context.write(k3,new IntWritable(total));
}
}
- Main
package com.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.streaming.io.InputWriter;
public class Main {
public static void main(String[] args) throws Exception {
//1.创建job。
Job job =Job.getInstance(new Configuration());
//2.任务入口
job.setJarByClass(Main.class);
//3.指定任务的Map和输出类型
job.setMapperClass(WMap.class);
job.setMapOutputKeyClass(Text.class);//k2
job.setMapOutputValueClass(IntWritable.class);//v2
//4.指定Reduce和输出类型
job.setReducerClass(WReduce.class);
job.setOutputKeyClass(Text.class);//k4
job.setOutputValueClass(IntWritable.class);//v4
//任务输入和输出
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
//任务执行
//参数true表示打印相关的日志
job.waitForCompletion(true);
}
}
- 打包部署执行
采用Maven进行管理
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.hadoop</groupId>
<artifactId>Mapreduce_wordcount</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Mapreduce_wordcount</name>
<description>wunaiieq</description>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<!--版本控制-->
<hadoop.version>2.7.3</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-yarn-api</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-streaming</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
<!--构建配置-->
<build>
<plugins>
<plugin>
<!--声明-->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.3.0</version>
<!--具体配置-->
<configuration>
<archive>
<manifest>
<!--jar包的执行入口-->
<mainClass>com.hadoop.Main</mainClass>
</manifest>
</archive>
<descriptorRefs>
<!--描述符,此处为预定义的,表示创建一个包含项目所有依赖的可执行 JAR 文件;
允许自定义生成jar文件内容-->
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<!--执行配置-->
<executions>
<execution>
<!--执行配置ID,可修改-->
<id>make-assembly</id>
<!--执行的生命周期-->
<phase>package</phase>
<goals>
<!--执行的目标,single表示创建一个分发包-->
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
- 运行
hadoop jar Mapreduce_wordcount-1.0-SNAPSHOT-jar-with-dependencies.jar /input/data.txt /output/wordcount/
- 效果
结果查看
hdfs dfs -cat /output/wordcount/part-r-00000