弱智吧:大模型变聪明,有我一份贡献【大模型VS弱智吧,谁聪明?谁弱智?】

news2025/1/11 7:57:50

「被门夹过的核桃,还能补脑吗?」

在中文网络上流传着这样一段话:弱智吧里没有弱智。

图片

百度「弱智吧」是个神奇的地方,在这里人人都说自己是弱智,但大多聪明得有点过了头。最近几年,弱智吧的年度总结文章都可以顺手喜提百度贴吧热度第一名。所谓总结,其实就是给当年吧里的弱智发言排个名。

各种高质量的段子在这里传入传出,吸引了无数人的围观和转载,这个贴吧的关注量如今已接近 300 万。你网络上看到的最新流行词汇,说不定就是弱智吧老哥的杰作。

图片

随着十几年的发展,越来越多的弱智文学也有了奇怪的风格,有心灵鸡汤,有现代诗,甚至有一些出现了哲学意义。

最近几天,一篇人工智能领域论文再次把弱智吧推上了风口浪尖。

图片

引发 AI 革命的大模型因为缺乏数据,终于盯上了弱智吧里无穷无尽的「数据集」。有人把这些内容拿出来训练了 AI,认真评测对比一番,还别说,效果极好。

接下来,我们看看论文讲了什么。

最近,大型语言模型(LLM)取得了重大进展,特别是在英语方面。然而,LLM 在中文指令调优方面仍然存在明显差距。现有的数据集要么以英语为中心,要么不适合与现实世界的中国用户交互模式保持一致。

为了弥补这一差距,一项由 10 家机构联合发布的研究提出了 COIG-CQIA(全称 Chinese Open Instruction Generalist - Quality Is All You Need),这是一个高质量的中文指令调优数据集。数据来源包括问答社区、维基百科、考试题目和现有的 NLP 数据集,并且经过严格过滤和处理。

此外,该研究在 CQIA 的不同子集上训练了不同尺度的模型,并进行了深入的评估和分析。本文发现,在 CQIA 子集上训练的模型在人类评估以及知识和安全基准方面取得了具有竞争力的结果。

研究者表示,他们旨在为社区建立一个多样化、广泛的指令调优数据集,以更好地使模型行为与人类交互保持一致。

本文的贡献可以总结如下:

  • 提出了一个高质量的中文指令调优数据集,专门用于与人类交互保持一致,并通过严格的过滤程序实现;

  • 探讨了各种数据源(包括社交媒体、百科全书和传统 NLP 任务)对模型性能的影响。为从中国互联网中选择训练数据提供了重要见解;

  • 各种基准测试和人工评估证实,在 CQIA 数据集上微调的模型表现出卓越的性能,从而使 CQIA 成为中国 NLP 社区的宝贵资源。

图片

  • 论文地址:[arxiv.org/pdf/2403.18…]

  • 数据地址:[huggingface.co/datasets/m-…]

  • 论文标题:COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning

COIG-CQIA 数据集介绍

为了保证数据质量以及多样性,本文从中国互联网内的优质网站和数据资源中手动选择了数据源。这些来源包括社区问答论坛、、内容创作平台、考试试题等。此外,该数据集还纳入了高质量的中文 NLP 数据集,以丰富任务的多样性。具体来说,本文将数据源分为四种类型:社交媒体和论坛、世界知识、NLP 任务和考试试题。

  • 社交媒体和论坛:包括知乎、SegmentFault 、豆瓣、小红书、弱智吧。

  • 世界知识:百科全书、四个特定领域的数据(医学、经济管理、电子学和农业)。

  • NLP 数据集:COIG-PC 、COIG Human Value 等。

  • 考试试题:中学和大学入学考试、研究生入学考试、逻辑推理测试、中国传统文化。

表 1 为数据集来源统计。研究者从中国互联网和社区的 22 个来源总共收集了 48,375 个实例,涵盖从常识、STEM 到人文等领域。

图 2 说明了各种任务类型,包括信息提取、问答、代码生成等。

图片

图 3 演示了指令和响应的长度分布。

为了分析 COIG-CQIA 数据集的多样性,本文遵循先前的工作,使用 Hanlp 工具来解析指令。

图片

实验结果

该研究在不同数据源的数据集上对 Yi 系列模型(Young et al., 2024)和 Qwen-72B(Bai et al., 2023)模型进行了微调,以分析数据源对模型跨领域知识能力的影响,并使用 Belle-Eval 上基于模型(即 GPT-4)的自动评估来评估每个模型在各种任务上的性能。

表 2、表 3 分别显示了基于 Yi-6B、Yi-34B 在不同数据集上进行微调得到的不同模型的性能。模型在头脑风暴、生成和总结等生成任务中表现出色,在数学和编码方面表现不佳。

图片

图片

下图 4 显示了 CQIA 和其他 5 个基线(即 Yi-6B-Chat、Baichuan2-7B-Chat、ChatGLM2-6B、Qwen-7B-Chat 和 InternLM-7B-Chat)的逐对比较人类评估结果。结果表明,与强基线相比,CQIA-Subset 实现了更高的人类偏好,至少超过 60% 的响应优于或与基线模型相当。这不仅归因于 CQIA 能够对人类问题或指令生成高质量的响应,还归因于其响应更符合现实世界的人类沟通模式,从而导致更高的人类偏好。

图片

该研究还在 SafetyBench 上评估了模型的安全性,结果如下表 4 所示:

图片

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1994627.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法——决策树

简介:个人学习分享,如有错误,欢迎批评指正。 一、什么是决策树? 决策树(decision tree):决策树是一种树形结构的监督学习算法,广泛应用于分类任务和回归任务中。它通过递归地将数据…

豆瓣的ip地址怎样修改:探索显示机制与实用操作

在数字化时代,网络空间成为了我们日常生活不可或缺的一部分。豆瓣,作为一个集书籍、电影、音乐评论及社交功能于一体的综合性平台,其用户遍布全球。然而,有时我们可能因为隐私保护、网络限制或特定需求而希望修改在豆瓣上显示的IP…

【STM32 FreeRTOS】任务

使用 RTOS 的实时应用程序可以被构建为一组独立的任务。每个任务在自己的上下文中执行,不依赖于系统内的其他任务或 RTOS 调度器本身。在任何时间点,应用程序中只能执行一个任务,实时 RTOS 调度器负责决定所要执行的任务。因此, R…

Figure 02 机器人发布:未来AI的巅峰还是泡沫中的救命稻草?

引言 近日,Figure AI 公司发布了其最新的机器人产品 Figure 02,引发了广泛关注。作为 Figure AI 的第二代人形机器人,Figure 02 的推出引发了关于它是否是“地表最强”机器人的讨论。同时,由于 OpenAI 的技术支持,这款…

Java Web —— 第三天(Ajax+组件)

Ajax 概念: Asynchronous JavaScript And XML,异步的JavaScript和XML。 作用: 数据交换:通过Aiax可以给服务器发送请求,并获服务器响应的数据 异步交互:可以在不重新加载整个页面的情况下,服务器交换数据并更新部分网页的技术&#xff0c…

Java开发笔记--通用基础数据校验的设计

最近在开发一个功能,对排水管网的基础数据(包括管井、管道、泵站,雨水口,雨水口线,泵站,污水处理厂,排口等)的导入进行校验。 以字段为纬度,考虑二个方面的校验:数据库唯一&#xf…

RHCA III之路---EX436-9

RHCA III之路---EX436-9 1. 题目2. 解题2.1 安装apache2.2 配置页面2.3 配置selinux和防火墙2.4 创建资源 3. 确认 1. 题目 2. 解题 考试时会给你个url,从url下载index.html并放入默认目录 2.1 安装apache 3个节点分别安装 yum install -y httpd2.2 配置页面 nodea上执行 …

VIVADO IP核之DDS直接数字频率合成器使用详解

VIVADO IP核之DDS直接数字频率合成器使用详解 目录 前言 一、DDS基本知识 二、DDS IP核使用之SIN COS LUT only 三、DDS IP核之SIN COS LUT only仿真 四、DDS IP核使用之Phase Generator and SIN COS LUT 五、DDS IP核之Phase Generator and SIN COS LUT仿真 总结 前言 …

js 深入理解原型(prototype)及如何创建对象

目录 1. 概述2. 工厂模式3. 构造函数模式3.1 创建的格式3.2 JS内部执行步骤3.3 constructor 构造器3.4 构造函数也是函数3.5 构造函数的问题 4. 原型模式 prototype4.1 理解原型本质4.2 原型层级(访问一个属性,查询的次序)4.2.1 查询次序:实例…

电动工具研讨会展商阵容揭晓,您的元器件选型指南!

导语 面对日益激烈的市场竞争,如何让您的电动工具脱颖而出?PI、MPS等多家知名元器件厂商将带来最新产品,覆盖MCU、电源管理芯片、功率器件等多个领域,助您一站式选型! 在智能制造浪潮的推动下,电动工具正快…

谷粒商城实战笔记-145-性能压测-性能监控-jvisualvm使用-解决插件不能安装

文章目录 jvisualvm的作用安装查看gc相关信息的插件解决jvisualvm不能正常安装插件的问题1,查看java版本2,打开网址3,修改jvisualvm的设置 jvisualvm的作用 JVisualVM是一个集成在Java Development Kit (JDK) 中的多功能工具,它提…

使用易语言写一个翻译小助手

下载地址: https://pan.quark.cn/s/fa0935d10b10

springboot流浪猫狗领养管理系统-计算机毕业设计源码51529

目 录 摘要 1 绪论 1.1 研究背景及意义 1.2 开发现状 1.3论文结构与章节安排 2 流浪猫狗领养管理系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 操作可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.2.2 非功能性分析 2.3 系统用例…

Java社会校招类型人力资源招聘系统小程序源码

解锁社会校招新篇章:探索高效人力资源招聘系统 引言:为何社会校招需要升级? 在这个日新月异的时代,企业之间的竞争愈发激烈,而人才作为核心竞争力,其获取与培养成为了每个企业不可忽视的战略要点。尤其是…

桥韵国风:传统美学桥梁可视化

融合国风元素,采用图扑可视化技术,将桥梁结构与美学设计生动展示,传递传统文化的独特韵味,提升观赏与研究价值。

MySQL排序,相同分数的,排序相同

一、数据准备 CREATE TABLE staff_product (staffId bigint NOT NULL COMMENT 员工id,staffName varchar(255) DEFAULT NULL COMMENT 员工姓名,product_count int DEFAULT NULL COMMENT 生产的产品数,PRIMARY KEY (staffId) ) ENGINEInnoDB DEFAULT CHARSETutf8mb4 COMMENT员工…

『大模型笔记』人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)

人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF) 文章目录 一. 人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)1. 概念解释2. RLHF的组成部分2.1. 强化学习(Reinforcement Learning, RL)2.2. 状态空间(state space)2.3. 动作空…

【OpenCV C++20 学习笔记】直方图均衡化-Histogram Equalization

直方图均衡化-Histogram Equalization 原理图片的直方图直方图均衡化实现方法 API示例 原理 图片的直方图 直方图的横坐标是图片的强度值(颜色值),纵坐标是每个强度值对应的像素的个数;因此坐标系上的每个方形图就代表了整张图片…

IDEA 生成类的注释信息

新建任意类,自动生成注释信息(选其一,否则会多出一份注释信息) 打开File -> Settings -> Editor -> File and Code Templates -> Includes,在File Header中添加如下信息,然后点击OK即可 /** *…

【数据结构与算法 | 力扣+二叉搜索树篇】力扣938,1008

1. 力扣938:二叉搜索树的范围和 1.1 题目: 给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。 示例 1: 输入:root [10,5,15,3,7,null,18], low 7, high 15 输出:32示…