「被门夹过的核桃,还能补脑吗?」
在中文网络上流传着这样一段话:弱智吧里没有弱智。
百度「弱智吧」是个神奇的地方,在这里人人都说自己是弱智,但大多聪明得有点过了头。最近几年,弱智吧的年度总结文章都可以顺手喜提百度贴吧热度第一名。所谓总结,其实就是给当年吧里的弱智发言排个名。
各种高质量的段子在这里传入传出,吸引了无数人的围观和转载,这个贴吧的关注量如今已接近 300 万。你网络上看到的最新流行词汇,说不定就是弱智吧老哥的杰作。
随着十几年的发展,越来越多的弱智文学也有了奇怪的风格,有心灵鸡汤,有现代诗,甚至有一些出现了哲学意义。
最近几天,一篇人工智能领域论文再次把弱智吧推上了风口浪尖。
引发 AI 革命的大模型因为缺乏数据,终于盯上了弱智吧里无穷无尽的「数据集」。有人把这些内容拿出来训练了 AI,认真评测对比一番,还别说,效果极好。
接下来,我们看看论文讲了什么。
最近,大型语言模型(LLM)取得了重大进展,特别是在英语方面。然而,LLM 在中文指令调优方面仍然存在明显差距。现有的数据集要么以英语为中心,要么不适合与现实世界的中国用户交互模式保持一致。
为了弥补这一差距,一项由 10 家机构联合发布的研究提出了 COIG-CQIA(全称 Chinese Open Instruction Generalist - Quality Is All You Need),这是一个高质量的中文指令调优数据集。数据来源包括问答社区、维基百科、考试题目和现有的 NLP 数据集,并且经过严格过滤和处理。
此外,该研究在 CQIA 的不同子集上训练了不同尺度的模型,并进行了深入的评估和分析。本文发现,在 CQIA 子集上训练的模型在人类评估以及知识和安全基准方面取得了具有竞争力的结果。
研究者表示,他们旨在为社区建立一个多样化、广泛的指令调优数据集,以更好地使模型行为与人类交互保持一致。
本文的贡献可以总结如下:
-
提出了一个高质量的中文指令调优数据集,专门用于与人类交互保持一致,并通过严格的过滤程序实现;
-
探讨了各种数据源(包括社交媒体、百科全书和传统 NLP 任务)对模型性能的影响。为从中国互联网中选择训练数据提供了重要见解;
-
各种基准测试和人工评估证实,在 CQIA 数据集上微调的模型表现出卓越的性能,从而使 CQIA 成为中国 NLP 社区的宝贵资源。
-
论文地址:[arxiv.org/pdf/2403.18…]
-
数据地址:[huggingface.co/datasets/m-…]
-
论文标题:COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning
COIG-CQIA 数据集介绍
为了保证数据质量以及多样性,本文从中国互联网内的优质网站和数据资源中手动选择了数据源。这些来源包括社区问答论坛、、内容创作平台、考试试题等。此外,该数据集还纳入了高质量的中文 NLP 数据集,以丰富任务的多样性。具体来说,本文将数据源分为四种类型:社交媒体和论坛、世界知识、NLP 任务和考试试题。
-
社交媒体和论坛:包括知乎、SegmentFault 、豆瓣、小红书、弱智吧。
-
世界知识:百科全书、四个特定领域的数据(医学、经济管理、电子学和农业)。
-
NLP 数据集:COIG-PC 、COIG Human Value 等。
-
考试试题:中学和大学入学考试、研究生入学考试、逻辑推理测试、中国传统文化。
表 1 为数据集来源统计。研究者从中国互联网和社区的 22 个来源总共收集了 48,375 个实例,涵盖从常识、STEM 到人文等领域。
图 2 说明了各种任务类型,包括信息提取、问答、代码生成等。
图 3 演示了指令和响应的长度分布。
为了分析 COIG-CQIA 数据集的多样性,本文遵循先前的工作,使用 Hanlp 工具来解析指令。
实验结果
该研究在不同数据源的数据集上对 Yi 系列模型(Young et al., 2024)和 Qwen-72B(Bai et al., 2023)模型进行了微调,以分析数据源对模型跨领域知识能力的影响,并使用 Belle-Eval 上基于模型(即 GPT-4)的自动评估来评估每个模型在各种任务上的性能。
表 2、表 3 分别显示了基于 Yi-6B、Yi-34B 在不同数据集上进行微调得到的不同模型的性能。模型在头脑风暴、生成和总结等生成任务中表现出色,在数学和编码方面表现不佳。
下图 4 显示了 CQIA 和其他 5 个基线(即 Yi-6B-Chat、Baichuan2-7B-Chat、ChatGLM2-6B、Qwen-7B-Chat 和 InternLM-7B-Chat)的逐对比较人类评估结果。结果表明,与强基线相比,CQIA-Subset 实现了更高的人类偏好,至少超过 60% 的响应优于或与基线模型相当。这不仅归因于 CQIA 能够对人类问题或指令生成高质量的响应,还归因于其响应更符合现实世界的人类沟通模式,从而导致更高的人类偏好。
该研究还在 SafetyBench 上评估了模型的安全性,结果如下表 4 所示:
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓