简明 | ResNet特点、残差模块、残差映射理解摘要
目录
整体结构
DBL
Res-n
Res-unit
concat
上采样
整体结构
网络主要包括两部分,一个部分是主干网络Darknet-53,一个部分使用特征金字塔(FPN)融合、加强特征提取并利用卷积进行预测。
DBL
DBL,即Darknetconv2d_BN_Leaky,就是conv+BN(Batch Normalization)+Leaky relu,三者共同构成组件。除最后一层卷积层外,BN和leaky relu与卷积层完整绑定。
Res-n
Res-n,即残差模块,n表示这个Res-block里含有多少个Res-unit。yolo-v3首次借鉴ResNet的残差结构,让网络更深,例如从v2的darknet-19到v3的darknet-53。http://t.csdnimg.cn/swIL4
Res-unit
Res-u,即残差单元,含有多个DBL,残差模块中含有一个或多个残差单元。
concat
concat,即拼接层,PyTorch中就是张量拼接,将Darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。
上采样
上采样层,放大图片和增加图片的分辨率,将提取到的Feature Map进行放大, 从而以更高的分辨率进行显示图像。这里的图像放大,不是下采样的逆操作,通常通过双线性插值或转置卷积实现。