深度学习 —— 个人学习笔记14(ResNet、DenseNet)

news2025/1/11 0:54:57

声明

  本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。

二十八、残差网络( ResNet )

import torch
import torchvision
import time
from torch import nn
from IPython import display
from torchvision import transforms
from torch.nn import functional as F
from torch.utils import data
import matplotlib.pyplot as plt
from matplotlib_inline import backend_inline

mydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def accuracy(y_hat, y):                                                           # 定义一个函数来为预测正确的数量计数
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y                                                # bool 类型,若预测结果与实际结果一致,则为 True
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
    axes.set_xscale(xscale), axes.set_yscale(yscale)
    axes.set_xlim(xlim),     axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()

class Accumulator:                                                                # 定义一个实用程序类 Accumulator,用于对多个变量进行累加
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

class Animator:                                                                   # 定义一个在动画中绘制数据的实用程序类 Animator
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        backend_inline.set_matplotlib_formats('svg')
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # Add multiple data points into the figure
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        # 通过以下两行代码实现了在PyCharm中显示动图
        # plt.draw()
        # plt.pause(interval=0.001)
        display.clear_output(wait=True)
        plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

class Timer:
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        self.tik = time.time()

    def stop(self):
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def sum(self):
        """Return the sum of time."""
        return sum(self.times)

def load_data_fashion_mnist(batch_size, resize=None):
    """下载 Fashion-MNIST 数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=False)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=False)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=4),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=4))

def train(net, train_iter, test_iter, num_epochs, lr, device):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', torch.cuda.get_device_name(device))
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    plt.title(f'loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f}\n'
              f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
    plt.show()

class Residual(nn.Module):
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


# 查看输入和输出形状一致的情况
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
print(f'查看输入和输出形状是否一致 : {Y.shape == X.shape}')

# 可以在增加输出通道数的同时,减半输出的高和宽
blk = Residual(3, 6, use_1x1conv=True, strides=2)
print(f'增加输出通道数,减半输出的高和宽 : {blk(X).shape}')

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t\t', X.shape)

lr, num_epochs, batch_size = 0.05, 5, 256
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=96)
train(net, train_iter, test_iter, num_epochs, lr, mydevice)


二十九、稠密连接网络( DenseNet )

import torch
import torchvision
import time
from torch import nn
from IPython import display
from torchvision import transforms
from torch.nn import functional as F
from torch.utils import data
import matplotlib.pyplot as plt
from matplotlib_inline import backend_inline

mydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def accuracy(y_hat, y):                                                           # 定义一个函数来为预测正确的数量计数
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y                                                # bool 类型,若预测结果与实际结果一致,则为 True
    return float(cmp.type(y.dtype).sum())

def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)
    axes.set_xscale(xscale), axes.set_yscale(yscale)
    axes.set_xlim(xlim),     axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()

class Accumulator:                                                                # 定义一个实用程序类 Accumulator,用于对多个变量进行累加
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

class Animator:                                                                   # 定义一个在动画中绘制数据的实用程序类 Animator
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        backend_inline.set_matplotlib_formats('svg')
        self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # Add multiple data points into the figure
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        # 通过以下两行代码实现了在PyCharm中显示动图
        # plt.draw()
        # plt.pause(interval=0.001)
        display.clear_output(wait=True)
        plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

class Timer:
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        self.tik = time.time()

    def stop(self):
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def sum(self):
        """Return the sum of time."""
        return sum(self.times)

def load_data_fashion_mnist(batch_size, resize=None):
    """下载 Fashion-MNIST 数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=False)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=False)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=4),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=4))

def train(net, train_iter, test_iter, num_epochs, lr, device):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', torch.cuda.get_device_name(device))
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    plt.title(f'loss {train_l:.3f}, train acc {train_acc:.3f}, test acc {test_acc:.3f}\n'
              f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
    plt.show()

def conv_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))

class DenseBlock(nn.Module):
    def __init__(self, num_convs, input_channels, num_channels):
        super(DenseBlock, self).__init__()
        layer = []
        for i in range(num_convs):
            layer.append(conv_block(
                num_channels * i + input_channels, num_channels))
        self.net = nn.Sequential(*layer)

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出
            X = torch.cat((X, Y), dim=1)
        return X

blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
print(f'得到通道数为 3 + 2 * 10 = 23 的输出 : {Y.shape}')

def transition_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=1),
        nn.AvgPool2d(kernel_size=2, stride=2))

blk = transition_block(23, 10)
print(f'输出的通道数减为 10,高和宽均减半 : {blk(Y).shape}')

b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    blks.append(DenseBlock(num_convs, num_channels, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        blks.append(transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2

net = nn.Sequential(
    b1, *blks,
    nn.BatchNorm2d(num_channels), nn.ReLU(),
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten(),
    nn.Linear(num_channels, 10))

lr, num_epochs, batch_size = 0.1, 5, 256
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=96)
train(net, train_iter, test_iter, num_epochs, lr, mydevice)



  文中部分知识参考:B 站 —— 跟李沐学AI;百度百科

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1985310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

01:PID

前言 位式控制算法 位式控制算法是一种通过比较设定值(SV)和当前值(PV)来控制目标的方法。当PV小于SV时,输出高电平,执行部件工作;当PV大于或等于SV时,输出低电平,执行部…

Android 中compileSdk、minSdk、targetSdk 是干什么用的?

作为多年 Android 开发的老司机, compileSdk 、minSdk、targetSdk 都是经常见到,但其具体含义是什么?它们都是在什么场景下去使用的。回想起来还真不太能说得清楚。 背景 要想说清楚它们是干什么的,那就不得不说一下主角 Android …

每组中随机选一行

Excel的A列是分组,B列是明细。 AB1GroupName2AJohn3AJoe4AAnn5ASusan6AJames7AMary8AL .orraine9BJoseph10BSinead11BMichelle12BBreege13BTom14BFrancis15BConan16BCait17BRonan18BDeirdre19BAoife20BSile21BSarah22CLisa23CMicky24CPat25DMiles26DOlivia27DAvril…

骑行合并 轨迹合并

https://gpxt.beer5214.com/ 利用GPX轨迹合并工具提升长途骑行与徒步体验 对于长途骑行或长途徒步旅行的爱好者来说,记录和管理GPS轨迹是一项重要的活动。无论是为了后续分析自己的路线、分享经历还是为下一次冒险做准备,确保所有轨迹数据的完整性和连贯…

Spark轨迹大数据处理_scalaSpark代码实多点对多点的GIS点(经纬度点)的方位角计算

计算逻辑 1、我这个代码是基于一个简化方位角模型,忽略了地球的曲率,适用于距离相对较短的距离。因为业务相关,这个方位角两个点的距离计算不会超过1000km。 2、我这个方位角的计算逻辑:是从一个地点指向另一个地点的方向&#xf…

中小学创客室培养学生全面发展

随着时代的发展,教育也在飞速发展,教育决定着一个国家的未来,一个家庭的未来,一个人的未来,我国近年来大力鼓励科学教育,支持科学创新。因此,学校应该重视对学生的科学教育,尤其是处于思想启蒙阶…

使用Python编写文件重复检查器

在日常工作中,我们经常需要处理大量文件,但有时候会遇到文件重复的情况。为了有效管理文件并避免重复占用存储空间,我们可以编写一个简单的Python程序来检查文件夹中是否存在重复文件。 C:\pythoncode\new\getmd5offile.py 介绍 本文将介绍…

CSP 2019 第三题:纪念品

CSP 2019 第三题:纪念品 题目链接 题目: 题意: 数据给出能预测的天数,纪念品种类,持有金币。每天对金币进行买卖,求买卖后的金币最大值(如何赚得更多) 知识点考: 动态规划…

从零到一:使用低代码平台搭建设备保养管理系统,提升运维效率

设备作为企业生产线上不可或缺的“动脉”,其稳定、高效的运行状态直接关乎到产品的质量与交付速度。然而,设备在长期高负荷运作下,难免会出现磨损、故障等问题,这不仅会影响生产进度,还可能带来额外的维修成本与安全风…

微信小程序--实现地图定位---获取经纬度

(1) (2) (3) html: <view class"titleTwo" style"border: none;"><view class"fontSize30 invoiceTile">企业地址</view><view class"invoiceRight" bind:tap"tapChooseAddress" data-maptype"…

Android 在布局中tools使用

效果图 布局 <TextViewandroid:id"id/tv"android:layout_width"wrap_content"android:layout_height"wrap_content"android:text"你好&#xff0c;这是TextView"android:visibility"gone"app:layout_constraintStart_to…

tornado 下载文件,显示下载速度、已下载大小、剩余时间、进度条、文件总大小

tornado 下载文件&#xff0c;显示下载速度、已下载大小、剩余时间、进度条、文件总大小 初版解决中文文件名报错显示下载速度、已下载大小下载过程中显示文件总大小、剩余时间、进度条正常前进 初版 import asyncio import osimport aiofiles import tornado.webclass FileHa…

【算法刷题日志】1044 最长重复子串和75 颜色分类,

颜色分类 这题就是双指针法&#xff0c;指到1的时候就和p1进行交换&#xff0c;然后p1指针往前移动&#xff0c;指到0的时候就和p0指针进行交换&#xff0c;p0和p1同时往前移动&#xff0c;由于可能出现连续的0后面连续的1&#xff0c;所以为了避免1被交换到末尾&#xff0c;当…

conda-pack基于同一种操作系统的环境打包教程

打包环境总结 1.激活需要复制的虚拟环境 conda env list cd /home/ww/miniconda3/envs/ conda activate webtool 2.将虚拟环境打包&#xff0c;包名&#xff1a;webtool_test.tar.gz conda pack -n webtool -o webtool_test.tar.gz 3.创建虚拟环境文件夹&#xff0c;把打包的…

Python实现深度森林(Deep Forest)分类模型(deepforest分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 随着大数据时代的到来&#xff0c;机器学习技术在各个领域的应用变得越来越广泛。在许多实际问题中&am…

HCIP学习 | 广域网、OSPF基础

Days03&#xff08;24.8.4&#xff09;广域网技术 概述 广域网技术在数据链路层面针对不同的物理链路定义了不同的封装方式。‌ 对于局域网封装&#xff0c;‌主要有Ethernet 2&#xff08;‌基于TCP/IP开发&#xff09;‌和IEEE802.3&#xff08;‌基于OSI协议开发&#xff0…

红黑树的概念和模拟实现[C++]

文章目录 红黑树的概念一、红黑树的性质红黑树原理二、红黑树的优势和比较 红黑树的模拟实现构建红黑树的数据结构定义节点的基本结构和初始化方式插入新节点插入新节点的颜色调整颜色和结构以满足红黑树性质 红黑树的应用场景 红黑树的概念 一、红黑树的性质 红黑树是一种自平…

强类型语言、弱类型语言、静态类型语言、动态类型语言

强类型和弱类型&#xff0c;并没有严格绝对的界限&#xff0c;比如C/C这种典型的强类型语言&#xff0c;实际上也允许一些隐式类型传换。

一六二、记node-sass安装失败和node切换失败问题

1. 项目install失败 2. 查询问题 在stackoverflow查询到error /node_modules/node-sass: Command failed&#xff0c;明白是node版本和node-sass版本不匹配 查询自己的node版本 应该是node版本太高的问题 3. 切换node版本 使用n切换node版本失败 原因&#xff1a;而 n 默…

2-Linux系统概述

Linux系统概述 创始人——林纳斯托瓦兹&#xff0c;Linux诞生于1991年&#xff0c;作者上大学期间实现的&#xff0c;Linux的特点&#xff1a;开源、免费、拥有最为庞大的源码贡献者&#xff1b;Linux的吉祥物是企鹅 区别开源和闭源 开源&#xff1a;开放程序源代码&#xff0…