一 环境搭建
老规矩,先上图吧。。
上面电源线接到VBUS了,给的一个5V,应该3.3V。不过这个屏还能正常跑也是不错。
折腾了一个晚上,主要还是找驱动,然后熟悉SPI接口的接法。
遇到了两个坑:
1 接口名称不统一,相对于I2C的两根线,这个SPI显示接口名称真的很多,SCL/SCK,SDA/MOSI,A0/DC,最后才知道这几个是一个东西。网上也找到几个参考,但是和板子上的标号对不起来。后来才慢慢搞明白。
2 没有miso。驱动代码库里面有个,example也有这个,但是死活板子上没这个口。最后看了一些参考代码,这个可以直接给None。
这两个坑踩过去,就没啥问题了,一次点亮出图。
这个应该会写两篇,一篇重点写SPI,一篇重点写显示。
驱动来自:GitHub - boochow/MicroPython-ST7735: ST7735 TFT LCD driver for MicroPython
接线:
ST7735 Pin | Pico Pin |
---|---|
VCC | 3.3V |
GND | GND |
SCL (SCK) | GP10 |
SDA (MOSI) | GP11 |
RES (RST) | GP17 |
DC(A0) | GP16 |
CS | GP18 |
二 代码
应用(显示图)
from ST7735 import TFT,TFTColor
from machine import SPI,Pin
spi = SPI(1, baudrate=20000000, polarity=0, phase=0, sck=Pin(10), mosi=Pin(11), miso=None)
tft=TFT(spi,16,17,18)
tft.initr()
tft.rgb(True)
tft.fill(TFT.BLACK)
f=open('test128x160.bmp', 'rb')
if f.read(2) == b'BM': #header
dummy = f.read(8) #file size(4), creator bytes(4)
offset = int.from_bytes(f.read(4), 'little')
hdrsize = int.from_bytes(f.read(4), 'little')
width = int.from_bytes(f.read(4), 'little')
height = int.from_bytes(f.read(4), 'little')
if int.from_bytes(f.read(2), 'little') == 1: #planes must be 1
depth = int.from_bytes(f.read(2), 'little')
if depth == 24 and int.from_bytes(f.read(4), 'little') == 0:#compress method == uncompressed
print("Image size:", width, "x", height)
rowsize = (width * 3 + 3) & ~3
if height < 0:
height = -height
flip = False
else:
flip = True
w, h = width, height
if w > 128: w = 128
if h > 160: h = 160
tft._setwindowloc((0,0),(w - 1,h - 1))
for row in range(h):
if flip:
pos = offset + (height - 1 - row) * rowsize
else:
pos = offset + row * rowsize
if f.tell() != pos:
dummy = f.seek(pos)
for col in range(w):
bgr = f.read(3)
tft._pushcolor(TFTColor(bgr[2],bgr[1],bgr[0]))
spi.deinit()
驱动
#driver for Sainsmart 1.8" TFT display ST7735
#Translated by Guy Carver from the ST7735 sample code.
#Modirfied for micropython-esp32 by boochow
import machine
import time
from math import sqrt
#TFTRotations and TFTRGB are bits to set
# on MADCTL to control display rotation/color layout
#Looking at display with pins on top.
#00 = upper left printing right
#10 = does nothing (MADCTL_ML)
#20 = upper left printing down (backwards) (Vertical flip)
#40 = upper right printing left (backwards) (X Flip)
#80 = lower left printing right (backwards) (Y Flip)
#04 = (MADCTL_MH)
#60 = 90 right rotation
#C0 = 180 right rotation
#A0 = 270 right rotation
TFTRotations = [0x00, 0x60, 0xC0, 0xA0]
TFTBGR = 0x08 #When set color is bgr else rgb.
TFTRGB = 0x00
#@micropython.native
def clamp( aValue, aMin, aMax ) :
return max(aMin, min(aMax, aValue))
#@micropython.native
def TFTColor( aR, aG, aB ) :
'''Create a 16 bit rgb value from the given R,G,B from 0-255.
This assumes rgb 565 layout and will be incorrect for bgr.'''
return ((aR & 0xF8) << 8) | ((aG & 0xFC) << 3) | (aB >> 3)
ScreenSize = (128, 160)
class TFT(object) :
"""Sainsmart TFT 7735 display driver."""
NOP = 0x0
SWRESET = 0x01
RDDID = 0x04
RDDST = 0x09
SLPIN = 0x10
SLPOUT = 0x11
PTLON = 0x12
NORON = 0x13
INVOFF = 0x20
INVON = 0x21
DISPOFF = 0x28
DISPON = 0x29
CASET = 0x2A
RASET = 0x2B
RAMWR = 0x2C
RAMRD = 0x2E
VSCRDEF = 0x33
VSCSAD = 0x37
COLMOD = 0x3A
MADCTL = 0x36
FRMCTR1 = 0xB1
FRMCTR2 = 0xB2
FRMCTR3 = 0xB3
INVCTR = 0xB4
DISSET5 = 0xB6
PWCTR1 = 0xC0
PWCTR2 = 0xC1
PWCTR3 = 0xC2
PWCTR4 = 0xC3
PWCTR5 = 0xC4
VMCTR1 = 0xC5
RDID1 = 0xDA
RDID2 = 0xDB
RDID3 = 0xDC
RDID4 = 0xDD
PWCTR6 = 0xFC
GMCTRP1 = 0xE0
GMCTRN1 = 0xE1
BLACK = 0
RED = TFTColor(0xFF, 0x00, 0x00)
MAROON = TFTColor(0x80, 0x00, 0x00)
GREEN = TFTColor(0x00, 0xFF, 0x00)
FOREST = TFTColor(0x00, 0x80, 0x80)
BLUE = TFTColor(0x00, 0x00, 0xFF)
NAVY = TFTColor(0x00, 0x00, 0x80)
CYAN = TFTColor(0x00, 0xFF, 0xFF)
YELLOW = TFTColor(0xFF, 0xFF, 0x00)
PURPLE = TFTColor(0xFF, 0x00, 0xFF)
WHITE = TFTColor(0xFF, 0xFF, 0xFF)
GRAY = TFTColor(0x80, 0x80, 0x80)
@staticmethod
def color( aR, aG, aB ) :
'''Create a 565 rgb TFTColor value'''
return TFTColor(aR, aG, aB)
def __init__( self, spi, aDC, aReset, aCS) :
"""aLoc SPI pin location is either 1 for 'X' or 2 for 'Y'.
aDC is the DC pin and aReset is the reset pin."""
self._size = ScreenSize
self._offset = bytearray([0,0])
self.rotate = 0 #Vertical with top toward pins.
self._rgb = True #color order of rgb.
self.tfa = 0 #top fixed area
self.bfa = 0 #bottom fixed area
self.dc = machine.Pin(aDC, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.reset = machine.Pin(aReset, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.cs = machine.Pin(aCS, machine.Pin.OUT, machine.Pin.PULL_DOWN)
self.cs(1)
self.spi = spi
self.colorData = bytearray(2)
self.windowLocData = bytearray(4)
def size( self ) :
return self._size
# @micropython.native
def on( self, aTF = True ) :
'''Turn display on or off.'''
self._writecommand(TFT.DISPON if aTF else TFT.DISPOFF)
# @micropython.native
def invertcolor( self, aBool ) :
'''Invert the color data IE: Black = White.'''
self._writecommand(TFT.INVON if aBool else TFT.INVOFF)
# @micropython.native
def rgb( self, aTF = True ) :
'''True = rgb else bgr'''
self._rgb = aTF
self._setMADCTL()
# @micropython.native
def rotation( self, aRot ) :
'''0 - 3. Starts vertical with top toward pins and rotates 90 deg
clockwise each step.'''
if (0 <= aRot < 4):
rotchange = self.rotate ^ aRot
self.rotate = aRot
#If switching from vertical to horizontal swap x,y
# (indicated by bit 0 changing).
if (rotchange & 1):
self._size =(self._size[1], self._size[0])
self._setMADCTL()
# @micropython.native
def pixel( self, aPos, aColor ) :
'''Draw a pixel at the given position'''
if 0 <= aPos[0] < self._size[0] and 0 <= aPos[1] < self._size[1]:
self._setwindowpoint(aPos)
self._pushcolor(aColor)
# @micropython.native
def text( self, aPos, aString, aColor, aFont, aSize = 1, nowrap = False ) :
'''Draw a text at the given position. If the string reaches the end of the
display it is wrapped to aPos[0] on the next line. aSize may be an integer
which will size the font uniformly on w,h or a or any type that may be
indexed with [0] or [1].'''
if aFont == None:
return
#Make a size either from single value or 2 elements.
if (type(aSize) == int) or (type(aSize) == float):
wh = (aSize, aSize)
else:
wh = aSize
px, py = aPos
width = wh[0] * aFont["Width"] + 1
for c in aString:
self.char((px, py), c, aColor, aFont, wh)
px += width
#We check > rather than >= to let the right (blank) edge of the
# character print off the right of the screen.
if px + width > self._size[0]:
if nowrap:
break
else:
py += aFont["Height"] * wh[1] + 1
px = aPos[0]
# @micropython.native
def char( self, aPos, aChar, aColor, aFont, aSizes ) :
'''Draw a character at the given position using the given font and color.
aSizes is a tuple with x, y as integer scales indicating the
# of pixels to draw for each pixel in the character.'''
if aFont == None:
return
startchar = aFont['Start']
endchar = aFont['End']
ci = ord(aChar)
if (startchar <= ci <= endchar):
fontw = aFont['Width']
fonth = aFont['Height']
ci = (ci - startchar) * fontw
charA = aFont["Data"][ci:ci + fontw]
px = aPos[0]
if aSizes[0] <= 1 and aSizes[1] <= 1 :
buf = bytearray(2 * fonth * fontw)
for q in range(fontw) :
c = charA[q]
for r in range(fonth) :
if c & 0x01 :
pos = 2 * (r * fontw + q)
buf[pos] = aColor >> 8
buf[pos + 1] = aColor & 0xff
c >>= 1
self.image(aPos[0], aPos[1], aPos[0] + fontw - 1, aPos[1] + fonth - 1, buf)
else:
for c in charA :
py = aPos[1]
for r in range(fonth) :
if c & 0x01 :
self.fillrect((px, py), aSizes, aColor)
py += aSizes[1]
c >>= 1
px += aSizes[0]
# @micropython.native
def line( self, aStart, aEnd, aColor ) :
'''Draws a line from aStart to aEnd in the given color. Vertical or horizontal
lines are forwarded to vline and hline.'''
if aStart[0] == aEnd[0]:
#Make sure we use the smallest y.
pnt = aEnd if (aEnd[1] < aStart[1]) else aStart
self.vline(pnt, abs(aEnd[1] - aStart[1]) + 1, aColor)
elif aStart[1] == aEnd[1]:
#Make sure we use the smallest x.
pnt = aEnd if aEnd[0] < aStart[0] else aStart
self.hline(pnt, abs(aEnd[0] - aStart[0]) + 1, aColor)
else:
px, py = aStart
ex, ey = aEnd
dx = ex - px
dy = ey - py
inx = 1 if dx > 0 else -1
iny = 1 if dy > 0 else -1
dx = abs(dx)
dy = abs(dy)
if (dx >= dy):
dy <<= 1
e = dy - dx
dx <<= 1
while (px != ex):
self.pixel((px, py), aColor)
if (e >= 0):
py += iny
e -= dx
e += dy
px += inx
else:
dx <<= 1
e = dx - dy
dy <<= 1
while (py != ey):
self.pixel((px, py), aColor)
if (e >= 0):
px += inx
e -= dy
e += dx
py += iny
# @micropython.native
def vline( self, aStart, aLen, aColor ) :
'''Draw a vertical line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (start[0], clamp(start[1] + aLen, 0, self._size[1]))
#Make sure smallest y 1st.
if (stop[1] < start[1]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._setColor(aColor)
self._draw(aLen)
# @micropython.native
def hline( self, aStart, aLen, aColor ) :
'''Draw a horizontal line from aStart for aLen. aLen may be negative.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
stop = (clamp(start[0] + aLen, 0, self._size[0]), start[1])
#Make sure smallest x 1st.
if (stop[0] < start[0]):
start, stop = stop, start
self._setwindowloc(start, stop)
self._setColor(aColor)
self._draw(aLen)
# @micropython.native
def rect( self, aStart, aSize, aColor ) :
'''Draw a hollow rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
self.hline(aStart, aSize[0], aColor)
self.hline((aStart[0], aStart[1] + aSize[1] - 1), aSize[0], aColor)
self.vline(aStart, aSize[1], aColor)
self.vline((aStart[0] + aSize[0] - 1, aStart[1]), aSize[1], aColor)
# @micropython.native
def fillrect( self, aStart, aSize, aColor ) :
'''Draw a filled rectangle. aStart is the smallest coordinate corner
and aSize is a tuple indicating width, height.'''
start = (clamp(aStart[0], 0, self._size[0]), clamp(aStart[1], 0, self._size[1]))
end = (clamp(start[0] + aSize[0] - 1, 0, self._size[0]), clamp(start[1] + aSize[1] - 1, 0, self._size[1]))
if (end[0] < start[0]):
tmp = end[0]
end = (start[0], end[1])
start = (tmp, start[1])
if (end[1] < start[1]):
tmp = end[1]
end = (end[0], start[1])
start = (start[0], tmp)
self._setwindowloc(start, end)
numPixels = (end[0] - start[0] + 1) * (end[1] - start[1] + 1)
self._setColor(aColor)
self._draw(numPixels)
# @micropython.native
def circle( self, aPos, aRadius, aColor ) :
'''Draw a hollow circle with the given radius and color with aPos as center.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
xend = int(0.7071 * aRadius) + 1
rsq = aRadius * aRadius
for x in range(xend) :
y = int(sqrt(rsq - x * x))
xp = aPos[0] + x
yp = aPos[1] + y
xn = aPos[0] - x
yn = aPos[1] - y
xyp = aPos[0] + y
yxp = aPos[1] + x
xyn = aPos[0] - y
yxn = aPos[1] - x
self._setwindowpoint((xp, yp))
self._writedata(self.colorData)
self._setwindowpoint((xp, yn))
self._writedata(self.colorData)
self._setwindowpoint((xn, yp))
self._writedata(self.colorData)
self._setwindowpoint((xn, yn))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyp, yxn))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxp))
self._writedata(self.colorData)
self._setwindowpoint((xyn, yxn))
self._writedata(self.colorData)
# @micropython.native
def fillcircle( self, aPos, aRadius, aColor ) :
'''Draw a filled circle with given radius and color with aPos as center'''
rsq = aRadius * aRadius
for x in range(aRadius) :
y = int(sqrt(rsq - x * x))
y0 = aPos[1] - y
ey = y0 + y * 2
y0 = clamp(y0, 0, self._size[1])
ln = abs(ey - y0) + 1;
self.vline((aPos[0] + x, y0), ln, aColor)
self.vline((aPos[0] - x, y0), ln, aColor)
def fill( self, aColor = BLACK ) :
'''Fill screen with the given color.'''
self.fillrect((0, 0), self._size, aColor)
def image( self, x0, y0, x1, y1, data ) :
self._setwindowloc((x0, y0), (x1, y1))
self._writedata(data)
def setvscroll(self, tfa, bfa) :
''' set vertical scroll area '''
self._writecommand(TFT.VSCRDEF)
data2 = bytearray([0, tfa])
self._writedata(data2)
data2[1] = 162 - tfa - bfa
self._writedata(data2)
data2[1] = bfa
self._writedata(data2)
self.tfa = tfa
self.bfa = bfa
def vscroll(self, value) :
a = value + self.tfa
if (a + self.bfa > 162) :
a = 162 - self.bfa
self._vscrolladdr(a)
def _vscrolladdr(self, addr) :
self._writecommand(TFT.VSCSAD)
data2 = bytearray([addr >> 8, addr & 0xff])
self._writedata(data2)
# @micropython.native
def _setColor( self, aColor ) :
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self.buf = bytes(self.colorData) * 32
# @micropython.native
def _draw( self, aPixels ) :
'''Send given color to the device aPixels times.'''
self.dc(1)
self.cs(0)
for i in range(aPixels//32):
self.spi.write(self.buf)
rest = (int(aPixels) % 32)
if rest > 0:
buf2 = bytes(self.colorData) * rest
self.spi.write(buf2)
self.cs(1)
# @micropython.native
def _setwindowpoint( self, aPos ) :
'''Set a single point for drawing a color to.'''
x = self._offset[0] + int(aPos[0])
y = self._offset[1] + int(aPos[1])
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = self._offset[0]
self.windowLocData[1] = x
self.windowLocData[2] = self._offset[0]
self.windowLocData[3] = x
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[0] = self._offset[1]
self.windowLocData[1] = y
self.windowLocData[2] = self._offset[1]
self.windowLocData[3] = y
self._writedata(self.windowLocData)
self._writecommand(TFT.RAMWR) #Write to RAM.
# @micropython.native
def _setwindowloc( self, aPos0, aPos1 ) :
'''Set a rectangular area for drawing a color to.'''
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = self._offset[0]
self.windowLocData[1] = self._offset[0] + int(aPos0[0])
self.windowLocData[2] = self._offset[0]
self.windowLocData[3] = self._offset[0] + int(aPos1[0])
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[0] = self._offset[1]
self.windowLocData[1] = self._offset[1] + int(aPos0[1])
self.windowLocData[2] = self._offset[1]
self.windowLocData[3] = self._offset[1] + int(aPos1[1])
self._writedata(self.windowLocData)
self._writecommand(TFT.RAMWR) #Write to RAM.
#@micropython.native
def _writecommand( self, aCommand ) :
'''Write given command to the device.'''
self.dc(0)
self.cs(0)
self.spi.write(bytearray([aCommand]))
self.cs(1)
#@micropython.native
def _writedata( self, aData ) :
'''Write given data to the device. This may be
either a single int or a bytearray of values.'''
self.dc(1)
self.cs(0)
self.spi.write(aData)
self.cs(1)
#@micropython.native
def _pushcolor( self, aColor ) :
'''Push given color to the device.'''
self.colorData[0] = aColor >> 8
self.colorData[1] = aColor
self._writedata(self.colorData)
#@micropython.native
def _setMADCTL( self ) :
'''Set screen rotation and RGB/BGR format.'''
self._writecommand(TFT.MADCTL)
rgb = TFTRGB if self._rgb else TFTBGR
self._writedata(bytearray([TFTRotations[self.rotate] | rgb]))
#@micropython.native
def _reset( self ) :
'''Reset the device.'''
self.dc(0)
self.reset(1)
time.sleep_us(500)
self.reset(0)
time.sleep_us(500)
self.reset(1)
time.sleep_us(500)
def initb( self ) :
'''Initialize blue tab version.'''
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(50)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data1 = bytearray(1)
self._writecommand(TFT.COLMOD) #Set color mode.
data1[0] = 0x05 #16 bit color.
self._writedata(data1)
time.sleep_us(10)
data3 = bytearray([0x00, 0x06, 0x03]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.MADCTL)
data1[0] = 0x08 #row address/col address, bottom to top refresh
self._writedata(data1)
data2 = bytearray(2)
self._writecommand(TFT.DISSET5) #Display settings
data2[0] = 0x15 #1 clock cycle nonoverlap, 2 cycle gate rise, 3 cycle oscil, equalize
data2[1] = 0x02 #fix on VTL
self._writedata(data2)
self._writecommand(TFT.INVCTR) #Display inversion control
data1[0] = 0x00 #Line inversion.
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data2[0] = 0x02 #GVDD = 4.7V
data2[1] = 0x70 #1.0uA
self._writedata(data2)
time.sleep_us(10)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0x05 #VGH = 14.7V, VGL = -7.35V
self._writedata(data1)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x01 #Opamp current small
data2[1] = 0x02 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data2[0] = 0x3C #VCOMH = 4V
data2[1] = 0x38 #VCOML = -1.1V
self._writedata(data2)
time.sleep_us(10)
self._writecommand(TFT.PWCTR6) #Power control
data2[0] = 0x11
data2[1] = 0x15
self._writedata(data2)
#These different values don't seem to make a difference.
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 2 #Start at column 2
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[1] = 1 #Start at row 2.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.RAMWR)
time.sleep_us(500)
self._writecommand(TFT.DISPON)
self.cs(1)
time.sleep_us(500)
def initr( self ) :
'''Initialize a red tab version.'''
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(150)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data6)
time.sleep_us(10)
data1 = bytearray(1)
self._writecommand(TFT.INVCTR) #Display inversion control
data1[0] = 0x07 #Line inversion.
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2
data3[1] = 0x02
data3[2] = 0x84
self._writedata(data3)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0xC5 #VGH = 14.7V, VGL = -7.35V
self._writedata(data1)
data2 = bytearray(2)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x0A #Opamp current small
data2[1] = 0x00 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0x2A #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0xEE #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data1[0] = 0x0E
self._writedata(data1)
self._writecommand(TFT.INVOFF)
self._writecommand(TFT.MADCTL) #Power control
data1[0] = 0xC8
self._writedata(data1)
self._writecommand(TFT.COLMOD)
data1[0] = 0x05
self._writedata(data1)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x00
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.DISPON)
time.sleep_us(100)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self.cs(1)
def initb2( self ) :
'''Initialize another blue tab version.'''
self._size = (ScreenSize[0] + 2, ScreenSize[1] + 1)
self._offset[0] = 2
self._offset[1] = 1
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(50)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(500)
data3 = bytearray([0x01, 0x2C, 0x2D]) #
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.INVCTR) #Display inversion control
data1 = bytearray(1) #
data1[0] = 0x07
self._writedata(data1)
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2 #
data3[1] = 0x02 #
data3[2] = 0x84 #
self._writedata(data3)
time.sleep_us(10)
self._writecommand(TFT.PWCTR2) #Power control
data1[0] = 0xC5 #
self._writedata(data1)
self._writecommand(TFT.PWCTR3) #Power control
data2 = bytearray(2)
data2[0] = 0x0A #
data2[1] = 0x00 #
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #
data2[1] = 0x2A #
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #
data2[1] = 0xEE #
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
data1[0] = 0x0E #
self._writedata(data1)
time.sleep_us(10)
self._writecommand(TFT.MADCTL)
data1[0] = 0xC8 #row address/col address, bottom to top refresh
self._writedata(data1)
#These different values don't seem to make a difference.
# dataGMCTRP = bytearray([0x0f, 0x1a, 0x0f, 0x18, 0x2f, 0x28, 0x20, 0x22, 0x1f,
# 0x1b, 0x23, 0x37, 0x00, 0x07, 0x02, 0x10])
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
# dataGMCTRN = bytearray([0x0f, 0x1b, 0x0f, 0x17, 0x33, 0x2c, 0x29, 0x2e, 0x30,
# 0x30, 0x39, 0x3f, 0x00, 0x07, 0x03, 0x10])
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
time.sleep_us(10)
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x02 #Start at column 2
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[1] = 0x01 #Start at row 2.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
data1 = bytearray(1)
self._writecommand(TFT.COLMOD) #Set color mode.
data1[0] = 0x05 #16 bit color.
self._writedata(data1)
time.sleep_us(10)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.RAMWR)
time.sleep_us(500)
self._writecommand(TFT.DISPON)
self.cs(1)
time.sleep_us(500)
#@micropython.native
def initg( self ) :
'''Initialize a green tab version.'''
self._reset()
self._writecommand(TFT.SWRESET) #Software reset.
time.sleep_us(150)
self._writecommand(TFT.SLPOUT) #out of sleep mode.
time.sleep_us(255)
data3 = bytearray([0x01, 0x2C, 0x2D]) #fastest refresh, 6 lines front, 3 lines back.
self._writecommand(TFT.FRMCTR1) #Frame rate control.
self._writedata(data3)
self._writecommand(TFT.FRMCTR2) #Frame rate control.
self._writedata(data3)
data6 = bytearray([0x01, 0x2c, 0x2d, 0x01, 0x2c, 0x2d])
self._writecommand(TFT.FRMCTR3) #Frame rate control.
self._writedata(data6)
time.sleep_us(10)
self._writecommand(TFT.INVCTR) #Display inversion control
self._writedata(bytearray([0x07]))
self._writecommand(TFT.PWCTR1) #Power control
data3[0] = 0xA2
data3[1] = 0x02
data3[2] = 0x84
self._writedata(data3)
self._writecommand(TFT.PWCTR2) #Power control
self._writedata(bytearray([0xC5]))
data2 = bytearray(2)
self._writecommand(TFT.PWCTR3) #Power control
data2[0] = 0x0A #Opamp current small
data2[1] = 0x00 #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR4) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0x2A #Boost frequency
self._writedata(data2)
self._writecommand(TFT.PWCTR5) #Power control
data2[0] = 0x8A #Opamp current small
data2[1] = 0xEE #Boost frequency
self._writedata(data2)
self._writecommand(TFT.VMCTR1) #Power control
self._writedata(bytearray([0x0E]))
self._writecommand(TFT.INVOFF)
self._setMADCTL()
self._writecommand(TFT.COLMOD)
self._writedata(bytearray([0x05]))
self._writecommand(TFT.CASET) #Column address set.
self.windowLocData[0] = 0x00
self.windowLocData[1] = 0x01 #Start at row/column 1.
self.windowLocData[2] = 0x00
self.windowLocData[3] = self._size[0] - 1
self._writedata(self.windowLocData)
self._writecommand(TFT.RASET) #Row address set.
self.windowLocData[3] = self._size[1] - 1
self._writedata(self.windowLocData)
dataGMCTRP = bytearray([0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29,
0x25, 0x2b, 0x39, 0x00, 0x01, 0x03, 0x10])
self._writecommand(TFT.GMCTRP1)
self._writedata(dataGMCTRP)
dataGMCTRN = bytearray([0x03, 0x1d, 0x07, 0x06, 0x2e, 0x2c, 0x29, 0x2d, 0x2e,
0x2e, 0x37, 0x3f, 0x00, 0x00, 0x02, 0x10])
self._writecommand(TFT.GMCTRN1)
self._writedata(dataGMCTRN)
self._writecommand(TFT.NORON) #Normal display on.
time.sleep_us(10)
self._writecommand(TFT.DISPON)
time.sleep_us(100)
self.cs(1)
def maker( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initr()
t.fill(0)
return t
def makeb( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initb()
t.fill(0)
return t
def makeg( ) :
t = TFT(1, "X1", "X2")
print("Initializing")
t.initg()
t.fill(0)
return t
三 SPI协议
插上祖传逻辑分析仪,五根线一起上,抓信号。
信号 | 通道 |
SDA | 0 |
SCK | 1 |
DC | 2 |
CS | 3 |
RESET | 4 |
接口说明:
整个信号大概是这样的,可以看到reset就是开始拉低再拉高,相当于重启了屏幕,之后就没事了。DC干的事情也很少。这部分就不多看了。重点还是看前面三个SPI的吧。
SPI一般是4根线,SCLK是时钟,MOSI是主设备输出,MISO是主设备输入(LCD没有输入,所以这次少了一根线),SS是片选。
1 片选
不同于I2C,SPI是通过片选信号来提供多设备支持。如下:
只有片选信号拉低时,信号才有效。这样也造成了SPI需要多个片选线,如果挂10个设备,就要10个片选线,这点确实就不如I2C先进了。。。
SPI(0, baudrate=40000000, polarity=1, phase=1, sck=Pin(18), mosi=Pin(19))
SPI库本身只管理时钟和数据,片选是自己管理。
def _writecommand( self, aCommand ) :
'''Write given command to the device.'''
self.dc(0)
self.cs(0)
self.spi.write(bytearray([aCommand]))
self.cs(1)
从代码也可以看出,写命令时候会手动将cs拉低。之后恢复。
2 时钟
然后是时钟线,这个和I2C差不多,倒是没啥好说的。就是上沿时候的MOSI或者MISO才算有效。(但是时钟线的间隔也有点怪。。。也不是固定的。。。)
3 MOSI/MISO
最后就是MOSI,这里也叫SDA。
根据时钟线上沿的MOSI信号,所以数据是1000 0000,最后换算出来就是0x80。(其实最后还有1个1,但是我不知道为什么没有解析,是不是一次只处理8位?)
好吧,虽然还有一些疑问,感觉还存在一些问题。后面澄清了我会再更新。但是SPI的重点内容我想都提到了,就到这里了。