从零开始的大模型训练教程

news2024/11/15 17:33:59

近年来,随着人工智能技术的迅猛发展,大模型(Large Models)成为了业界关注的焦点。这些模型,尤其是那些基于Transformer架构的自然语言处理模型,如GPT系列、BERT等,在各种任务上取得了前所未有的成就。本文旨在为您介绍大模型的训练过程,并推荐几本值得阅读的书籍,帮助您从零基础开始,逐步掌握大模型的核心技术和应用。

什么是大模型?
大模型通常指的是拥有数亿乃至数十亿参数的深度学习模型。它们通过大规模的数据集训练而成,能够捕捉到复杂的数据分布特征,从而在多个领域展现出卓越的能力。大模型在自然语言处理(NLP)、计算机视觉(CV)、语音识别等多个领域都有着广泛的应用。

大模型的训练过程
大模型的核心在于其庞大的规模和强大的计算能力。以下是一些关键的概念和技术:

  1. 自注意力机制(Self-Attention)
    自注意力机制允许模型在处理序列数据时关注到输入的不同部分,从而更好地理解上下文关系。这种机制使得模型能够处理更长的文本序列,并且在没有明确的序列长度限制的情况下进行有效的预测。

  2. Transformer架构
    Transformer架构是现代大模型的基础,它摒弃了传统的循环神经网络(RNN)结构,而是使用了自注意力机制来处理序列数据。这种设计极大地提高了训练效率,并且使得模型可以并行化处理输入序列。

  3. 数据并行与模型并行
    由于大模型参数众多,单一设备往往无法承载所有的计算。因此,实践中通常采用数据并行和模型并行的方法来分散计算负担,保证训练能够在有限时间内完成。

  4. 预训练与微调
    预训练是指在大量未标注数据上训练模型,使其学会通用的语言表示。随后,可以通过在特定任务的小数据集上进行微调,使模型适应具体的应用场景。

  5. 损失函数与优化器
    选择合适的损失函数和优化器对于大模型的训练至关重要。常用的损失函数包括交叉熵损失等,而优化器则有Adam、Adagrad等多种选择。

  6. 超参数调整
    超参数的设置直接影响模型的性能。常见的超参数包括学习率、批次大小、隐藏层单元数等。合理的超参数设置可以帮助模型更快收敛,并达到更好的性能。

  7. 训练技巧
    权重初始化:良好的权重初始化策略可以避免梯度消失或梯度爆炸问题。
    正则化:使用正则化方法(如Dropout)可以减少过拟合现象。
    学习率调度:动态调整学习率有助于加速收敛过程。
    书籍推荐
    为了更好地理解和掌握大模型的技术细节及其应用,下面推荐几本优秀的书籍供您参考:

  8. 《大模型应用开发极简入门》
    这是一本适合初学者的大模型应用开发入门书籍,内容涵盖了AI的基本概念和大模型的应用实例。对于想要快速上手实践的读者来说,这本书是非常好的起点。

  9. 《ChatGPT实战宝典:150+案例带你轻松玩转大模型》
    此书深入浅出地介绍了ChatGPT等语言大模型的基础知识,并提供了丰富的实战案例,有助于读者了解如何在实际生活中应用这些技术。此外,书中还探讨了大模型对未来生活和工作的影响。

  10. 《多模态大模型:技术原理与实战》
    如果您对多模态大模型感兴趣,这本书将是不错的选择。它系统地介绍了多模态大模型的历史、技术原理和应用案例,特别适合那些希望深入了解多模态技术的读者。

  11. 《一书即可通关LLM大模型》
    这是一本基于GPT3、GPT4等Transformer架构的自然语言处理书籍,适合那些对Transformer工作原理感兴趣的读者。本书不仅讲解了理论知识,还有具体的实践指导,非常适合自学。

  12. 《大模型入门指南:基本技术原理与应用》
    这本书覆盖了大模型的基本技术原理以及不同应用场景下的实战案例。无论是零基础的初学者还是有一定经验的研究人员,都可以从中获益良多。

结语
大模型正在重塑我们对人工智能的理解,并为许多行业带来了革命性的变化。通过上述书籍的学习,您可以深入了解大模型的工作原理和技术细节,进而探索更多可能的应用场景。希望本文能够帮助您踏上学习大模型的旅程,并在未来的研究和工作中取得成功。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1984407.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

git add . 警告

这些警告是因为 Git 检测到你的文件使用了不同的换行符(LF 或 CRLF),并提示在下次 Git 操作中将会统一换行符为 CRLF。这通常发生在跨平台协作时,例如在 Windows 环境下编辑的文件可能使用 CRLF,而在类 Unix 环境&…

数据结构:基于顺序表实现通讯录系统(含源码)

目录 一、前言 二、各个功能的实现 2.1 初始化通讯录 2.2 添加通讯录数据 2.3 查找通讯录数据 2.4 删除通讯录数据 2.5 修改通讯录数据 2.6 展示通讯录数据​编辑 2.7 销毁通讯录数据 三、添加菜单和测试 四、完整源码 sxb.h sxb.c contact.h contact.c test.c 一、前…

ROS智能移动机器人实训

0.前言 1.任务 1.1.任务实训任务 1.使用/voice_aiui等语音服务完成基本的语音聊天(需唤醒词“元宝”)。 2.语音多点导航 3.语音单点导航 1.2.智能机器人仿真任务 1.3.智能机器人实物操作任务 2.目的 3.使用环境 4.综合项目实验 任务实训 问题 解决办法…

LinuxIO之文件系统的实现

Ext2/3/4 的layout文件系统的一致性: append一个文件的全流程掉电与文件系统的一致性fsck文件系统的日志ext4 mount选项文件系统的debug和dumpCopy On Write 文件系统: btrfs 预备知识:数据库里的transaction(事务)有什么特性? …

前端高薪岗位之大模型端上部署及训练

自2022年ChatGPT发布以来,以大模型为依托的AIGC相关的应用产品,比如ChatGPT、Midjourney、Stable Diffusion等,在社交网站的讨论热度持续攀升,引发了较大范围的好奇与关注。 目前,国内外各个科技大厂在大模型的端侧部…

手机k歌麦克风哪种好,口碑最好的k歌麦克风是哪款,麦克风推荐

​当我们谈论到演讲、表演或者录制视频时,一个高质量的无线麦克风能够使得整个体验提升至一个全新的水平。它不仅能够保证声音的清晰度和真实度,还能够让使用者在演讲或者表演时更加自信和舒适。基于对市场的深入研究和用户体验的考量,我挑选…

Langchain-Chatchat+Xinference集成部署

Langchain-ChatchatXinference集成部署 安装环境: 系统:Anolis OS 8.9 python版本:Python 3.9.19 Langchain-Chatchat版本:0.3.1.3 Xinference版本:v0.13.3 模型选择(下载时需要科学上网)&#…

一些常见的中间件漏洞

Tomcat 之CVE-2017-12615 靶场搭建使用vulhub-master/tomcat/CVE-2017-12615 第一步、访问网站 第二步、首页抓包改为put方式提交 网上找一个jsp的一句话木马 使用webshell工具链接即可 Tomcat 之tomcat8 vulhub-master/tomcat/tomcat8 继续访问页面 这次我们点击登录&…

ES6中的Promise、async、await,超详细讲解!

Promise是es6引入的异步编程新解决方案,Promise实例和原型上有reject、resolve、all、then、catch、finally等多个方法,语法上promise就是一个构造函数,用来封装异步操作并可以获取其成功或失败的结果,本篇文章主要介绍了ES6中的P…

spring原理(第十天)

jdk 和 cglib 在 Spring 中的统一 Spring 中对切点、通知、切面的抽象如下 切点:接口 Pointcut,典型实现 AspectJExpressionPointcut 通知:典型接口为 MethodInterceptor 代表环绕通知 切面:Advisor,包含一个 Advic…

政务服务技能竞赛规则流程方案

此次政务服务技能竞赛以“强服务、优素质、促提升、共发展”为目标,通过以赛代练、以赛促建、比学赶超、全面提升,激发各级政务服务工作人员学政策、钻业务、练技能的热情和积极性,全面推动行政效能提升与营商环境建设,铸造新时代…

pytorch和deep learning技巧和bug解决方法短篇收集

有一些几句话就可以说明白的观点或者解决的的问题,小虎单独收集到这里。 torch.hub.load how does it work 下载预训练模型再载入,用程序下载链接可能失效。 model torch.hub.load(ultralytics/yolov5, yolov5s)model torch.hub.load(ultralytics/y…

IROS2024 | DarkGS:学习神经照明和3D高斯重新照明,用于黑暗中机器人探索

DarkGS:学习神经照明和3D高斯重新照明,用于黑暗中机器人探索 论文标题:DarkGS: Learning Neural Illumination and 3D Gaussians Relighting for Robotic Exploration in the Dark 论文地址:https://arxiv.org/abs/2403.10814 研…

数据开发/数仓工程师上手指南(七)CDM-DWS层搭建规范及流程

前言 进入到了CMD公共数据层的结尾最后一层-DWS层了,该层基本就是直接与业务强关联,也就是说产品提出的需求,或是报表、用户画像统计好还是数据大屏都是在这一层给处理好数据,再放入ADS层,然后我们只需要在BI里面配备…

【数据结构】——堆的实现(赋源码)

堆的概念与结构 堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组对象。 堆的性质: 堆中某个结点的值总是不大于或不小于其父结点的值; 堆总是一棵完全二叉树。 堆的物理结构本质上是顺序…

PDF怎么转Word?分享二个简单的方法

很多小伙伴在工作学习的时候,经常会遇到别人发来的PDF文件。PDF 文件用于查看资料非常方便,因为它们的布局稳定,在大多数设备上都可以显示相同的布局。 如果我们需要将其转换为Word,如何转换呢?许多人不知道如何转换。…

怎么录制视频?简单步骤教你如何录制高质量视频

视频是我们生活、工作和学校中不可或缺的一部分,但对于初学者来说,面对琳琅满目的录屏工具,往往感到无从下手,今天我们就给大家分享几种简单又高效的电脑录屏方法,让你轻松掌握高质量视频录制的技巧。 录制技巧1&#…

工厂人员定位系统原理

工厂人员定位系统是一种通过现代无线通讯技术和定位技术实现对工厂内人员位置进行实时监测的系统。其具体原理是通过安装在员工身上的定位标签产生无线电信号,并通过无线通讯网络传输给基站,再由基站将数据传输到服务器进行处理,最终在监控中…

《藏文驾考》App:支持藏汉双语切换的驾考题库,方便不熟汉语的藏族学员考驾照,中文藏文语音读题!

藏文驾考,是一款支持藏汉双语切换的驾照考试在线刷题学习软件。服务于涉藏地区的藏文驾驶理论考试,同步西藏、四川、青海、甘南等涉藏地区的驾考新规题库。提供科目一、科目四藏文交规理论学习,科目二、科目三视频技巧讲解。支持汉语、卫藏、…

Power功效分析之广义模型原理及案例实操

Power功效分析常用于实验研究时样本量的计算(或功效值计算),如果是涉及广义模型时的回归系数差异计算时,SPSSAU共提供二元logit回归和Poisson回归情况时的Power功效分析,具体如下表格所述: 比如二元Logit回…