【python】OpenCV—Image Colorization

news2024/11/14 15:15:07

在这里插入图片描述

文章目录

  • 1、CIELAB 色彩空间
  • 2、作色问题定义
  • 3、Caffe 模型
  • 4、代码实现——Image
  • 5、代码实现——Video
  • 6、参考

1、CIELAB 色彩空间

Lab颜色空间,也称为Lab色彩空间或CIELAB色彩空间,是一种基于人类视觉感知特性的颜色模型。它是在1931年国际照明委员会(CIE)制定的颜色度量国际标准的基础上建立的,并在1976年经过修订和完善。Lab颜色空间以其独特的优点在多个领域得到广泛应用。

Lab颜色空间是一种颜色-对立空间,它包含三个维度:L、a和b。

  • L:表示亮度(Luminosity),取值范围为0到100,对应从纯黑到纯白的亮度变化。

  • a:表示颜色对立维度之一,通常与绿色到红色的范围相对应,取值范围为-128到+127,其中负值表示绿色方向,正值表示洋红方向。

  • b:表示另一个颜色对立维度,通常与蓝色到黄色的范围相对应,取值范围同样为-128到+127,其中负值表示蓝色方向,正值表示黄色方向。

2、作色问题定义

参考文章

Zhang R, Isola P, Efros A A. Colorful image colorization[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14. Springer International Publishing, 2016: 649-666.

在这里插入图片描述

在这里插入图片描述

为了简化计算,Lab 颜色空间的 ab 空间被量化为 313 个 bin,如下图所示。而不是为每个像素找到 a 和 b 值,因为这种量化,我们只需要找到一个介于 0 和 312之间的 bin 编号。另一种思考问题的方式是我们已经有了取值从 0 到 255 的 L 通道,我们需要找到取值在 0 到 312 之间的 ab 通道。所以颜色预测任务现在是变成了多分类问题,其中每个灰色像素有 313 个类别可供选择

在这里插入图片描述

3、Caffe 模型

在这里插入图片描述

colorization_release_v1

在这里插入图片描述

colorization_release_v2
在这里插入图片描述
colorization_release_v2_norebal
在这里插入图片描述

4、代码实现——Image

# This code is written by Sunita Nayak at BigVision LLC. It is based on the OpenCV project.
# It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html

#### Usage example: python3 colorize.py --input greyscaleImage.png

import numpy as np
import cv2 as cv
import argparse
import os.path

parser = argparse.ArgumentParser(description='Colorize GreyScale Image')
parser.add_argument('--input', help='Path to image.', default="greyscaleImage.png")
args = parser.parse_args()

if args.input==None:
    print('Please give the input greyscale image name.')
    print('Usage example: python3 colorizeImage.py --input greyscaleImage.png')
    exit()

if os.path.isfile(args.input)==0:
    print('Input file does not exist')
    exit()

# Read the input image
frame = cv.imread(args.input)

# Specify the paths for the 2 model files
protoFile = "./models/colorization_deploy_v2.prototxt"
weightsFile = "./models/colorization_release_v2.caffemodel"
# weightsFile = "./models/colorization_release_v2_norebal.caffemodel"

# Load the cluster centers
pts_in_hull = np.load('./pts_in_hull.npy')

# Read the network into Memory
net = cv.dnn.readNetFromCaffe(protoFile, weightsFile)

# populate cluster centers as 1x1 convolution kernel
pts_in_hull = pts_in_hull.transpose().reshape(2, 313, 1, 1)
net.getLayer(net.getLayerId('class8_ab')).blobs = [pts_in_hull.astype(np.float32)]
net.getLayer(net.getLayerId('conv8_313_rh')).blobs = [np.full([1, 313], 2.606, np.float32)]

#from opencv sample
W_in = 224
H_in = 224

img_rgb = (frame[:,:,[2, 1, 0]] * 1.0 / 255).astype(np.float32)
img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab)
img_l = img_lab[:,:,0] # pull out L channel

# resize lightness channel to network input size
img_l_rs = cv.resize(img_l, (W_in, H_in)) #
img_l_rs -= 50 # subtract 50 for mean-centering

net.setInput(cv.dnn.blobFromImage(img_l_rs))
ab_dec = net.forward()[0,:,:,:].transpose((1,2,0)) # this is our result

(H_orig,W_orig) = img_rgb.shape[:2] # original image size
ab_dec_us = cv.resize(ab_dec, (W_orig, H_orig))
img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original image L
img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1)

outputFile = args.input[:-4]+'_colorized.png'
cv.imwrite(outputFile, (img_bgr_out*255).astype(np.uint8))
print('Colorized image saved as '+outputFile)
print('Done !!!')

cluster center

// 来自 pts_in_hull.npy 的 313 个 ab 聚类中心(已经转置)
static float hull_pts[] = {
    -90., -90., -90., -90., -90., -80., -80., -80., -80., -80., -80., -80., -80., -70., -70., -70., -70., -70., -70., -70., -70.,
    -70., -70., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -60., -50., -50., -50., -50., -50., -50., -50., -50.,
    -50., -50., -50., -50., -50., -50., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -40., -30.,
    -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -30., -20., -20., -20., -20., -20., -20., -20.,
    -20., -20., -20., -20., -20., -20., -20., -20., -20., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10., -10.,
    -10., -10., -10., -10., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 10., 10., 10., 10., 10., 10., 10.,
    10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20., 20.,
    20., 20., 20., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 30., 40., 40., 40., 40.,
    40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 40., 50., 50., 50., 50., 50., 50., 50., 50., 50., 50.,
    50., 50., 50., 50., 50., 50., 50., 50., 50., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60., 60.,
    60., 60., 60., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 70., 80., 80., 80.,
    80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 80., 90., 90., 90., 90., 90., 90., 90., 90., 90., 90.,
    90., 90., 90., 90., 90., 90., 90., 90., 90., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 50., 60., 70., 80., 90.,
    20., 30., 40., 50., 60., 70., 80., 90., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -20., -10., 0., 10., 20., 30., 40., 50.,
    60., 70., 80., 90., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -40., -30., -20., -10., 0., 10., 20.,
    30., 40., 50., 60., 70., 80., 90., 100., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -50.,
    -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., -60., -50., -40., -30., -20., -10., 0., 10., 20.,
    30., 40., 50., 60., 70., 80., 90., 100., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90.,
    100., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -80., -70., -60., -50.,
    -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -90., -80., -70., -60., -50., -40., -30., -20., -10.,
    0., 10., 20., 30., 40., 50., 60., 70., 80., 90., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30.,
    40., 50., 60., 70., 80., 90., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70.,
    80., -110., -100., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., -110., -100.,
    -90., -80., -70., -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., 80., -110., -100., -90., -80., -70.,
    -60., -50., -40., -30., -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., -110., -100., -90., -80., -70., -60., -50., -40., -30.,
    -20., -10., 0., 10., 20., 30., 40., 50., 60., 70., -90., -80., -70., -60., -50., -40., -30., -20., -10., 0.
};

Class rebalancing

输入图片

在这里插入图片描述

v2 without re-balance
在这里插入图片描述
v2 with re-balance
在这里插入图片描述

输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述

输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述
输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述

输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述

输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述

输入图片

在这里插入图片描述

v2 without re-balance

在这里插入图片描述

v2 with re-balance

在这里插入图片描述

可以观察到引入 color rebalance 后,整体画面变得更黄

5、代码实现——Video

# This code is written by Sunita Nayak at BigVision LLC. It is based on the OpenCV project.
# It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html

#### Usage example: python3 colorizeVideo.py --input greyscaleVideo.mp4

import numpy as np
import cv2 as cv
import argparse
import os.path

parser = argparse.ArgumentParser(description='Colorize GreyScale Video')
parser.add_argument('--input', help='Path to video file.')
args = parser.parse_args()

if args.input==None:
    print('Please give the input greyscale video file.')
    print('Usage example: python3 colorizeVideo.py --input greyscaleVideo.mp4')
    exit()

if os.path.isfile(args.input)==0:
    print('Input file does not exist')
    exit()
          
# Read the input video
cap = cv.VideoCapture(args.input)
hasFrame, frame = cap.read()

outputFile = args.input[:-4]+'_colorized.avi'
vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 60, (frame.shape[1],frame.shape[0]))

# Specify the paths for the 2 model files
protoFile = "./models/colorization_deploy_v2.prototxt"
# weightsFile = "./models/colorization_release_v2.caffemodel"
weightsFile = "./models/colorization_release_v2_norebal.caffemodel"

# Load the cluster centers
pts_in_hull = np.load('./pts_in_hull.npy')

# Read the network into Memory
net = cv.dnn.readNetFromCaffe(protoFile, weightsFile)

# populate cluster centers as 1x1 convolution kernel
pts_in_hull = pts_in_hull.transpose().reshape(2, 313, 1, 1)
net.getLayer(net.getLayerId('class8_ab')).blobs = [pts_in_hull.astype(np.float32)]
net.getLayer(net.getLayerId('conv8_313_rh')).blobs = [np.full([1, 313], 2.606, np.float32)]

#from opencv sample
W_in = 224
H_in = 224

while cv.waitKey(1):

    hasFrame, frame = cap.read()
    frameCopy = np.copy(frame)
    if not hasFrame:
        break

    img_rgb = (frame[:,:,[2, 1, 0]] * 1.0 / 255).astype(np.float32)
    img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab)
    img_l = img_lab[:,:,0] # pull out L channel

    # resize lightness channel to network input size
    img_l_rs = cv.resize(img_l, (W_in, H_in))
    img_l_rs -= 50 # subtract 50 for mean-centering

    net.setInput(cv.dnn.blobFromImage(img_l_rs))
    ab_dec = net.forward()[0,:,:,:].transpose((1,2,0)) # this is our result

    (H_orig,W_orig) = img_rgb.shape[:2] # original image size
    ab_dec_us = cv.resize(ab_dec, (W_orig, H_orig))
    img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # concatenate with original L channel
    img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1)

    vid_writer.write((img_bgr_out*255).astype(np.uint8))

vid_writer.release()

print('Colorized video saved as '+outputFile)
print('Done !!!')

输入视频

greyscaleVideo

结果

colorization_release_v2_noreba

Result-colorization_release_v2

可以观察到引入 color rebalance 后,整体画面变得更黄

6、参考

  • OpenCV进阶(9)基于OpenCV的图像着色

  • 图像着色领域可有什么经典论文?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1983404.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

渗透SQL注入

首先打开php: Less-1: 打开浏览器输入网址,进入靶场: 输入?id1查询: 使用order by查询数据表的列数: http://127.0.0.1/sqllab/less-1/?id1 order by 4 -- ​ http://127.0.0.1/sqllab/less-1/?id1 order by 3 -- 由此可得表…

基于paddleocr实现验证码识别——训练数据

一、项目介绍 验证码(CAPTCHA)用于区分用户是人类还是计算机程序(如机器人)。这是为了防止各种形式的自动化攻击和滥用。以下是需要验证码识别的几个主要原因: 1. 防止恶意破解密码 攻击者可能会使用自动化程序进行…

数据结构----------贪心算法

什么是贪心算法? 贪心算法(Greedy Algorithm)是一种在问题求解过程中,每一步都采取当前状态下最优(即最有利)的选择,从而希望导致最终的全局最优解的算法策略。 贪心算法的核心思想是做选择时&…

【深度学习】DeepSpeed,ZeRO 数据并行的三个阶段是什么?

文章目录 ZeRO实验实验设置DeepSpeed ZeRO Stage-2 实验性能比较进一步优化DeepSpeed ZeRO Stage-3 和 CPU 卸载结论ZeRO ZeRO(Zero Redundancy Optimizer)是一种用于分布式训练的大规模深度学习模型的优化技术。它通过分片模型状态(参数、梯度和优化器状态)来消除数据并行…

Flink异步IO 调用算法总是超时

记录一次使用Flink 异步调用IO 总是超时的bug 注&#xff1a;博主使用的版本就是&#xff1a;<flink.version>1.16.1</flink.version> 起因&#xff1a; 因公司业务需要&#xff0c;使用Flink对数据进行流式处理&#xff0c;具体处理流程就是&#xff0c;从kafka…

PageRank算法与TextRank算法

PageRank PageRank 是一种用于计算网页重要性的算法&#xff0c;其核心思想源自随机浏览模型。这个模型假设一个网络中的用户通过随机点击链接在网页之间跳转&#xff0c;并根据网页的链接结构计算每个网页的重要性。 假设三个网页按以下方式连接&#xff0c;计算每个网页的PR值…

【零基础实战】基于物联网的人工淡水湖养殖系统设计

文章目录 一、前言1.1 项目介绍1.1.1 开发背景1.1.2 项目实现的功能1.1.3 项目硬件模块组成1.1.4 ESP8266工作模式配置 1.2 系统设计方案1.2.1 关键技术与创新点1.2.2 功能需求分析1.2.3 现有技术与市场分析1.2.4 硬件架构设计1.2.5 软件架构设计1.2.6 上位机开发思路 1.3 系统…

Robot Operating System——深度解析单线程执行器(SingleThreadedExecutor)执行逻辑

大纲 创建SingleThreadedExecutor新增Nodeadd_nodetrigger_entity_recollectcollect_entities 自旋等待get_next_executablewait_for_workget_next_ready_executableTimerSubscriptionServiceClientWaitableAnyExecutable execute_any_executable 参考资料 在ROS2中&#xff0c…

ARM知识点二

一、指令 指令的生成过程 指令执行过程示例 if (a 0) {x 0; } else {x x 3; } //翻译为 cmp r0,#0 MOVEQ R1,#0 ADDGT R1,R1,#3指令获取&#xff1a;从Flash中读取 CMP R0, #0&#xff0c;控制器开始执行。 指令解码&#xff1a;解码器解析 CMP 指令&#xff0c;ALU比较R…

DAMA学习笔记(十)-数据仓库与商务智能

1.引言 数据仓库&#xff08;Data Warehouse&#xff0c;DW&#xff09;的概念始于20世纪80年代。该技术赋能组织将不同来源的数据整合到公共的数据模型中去&#xff0c;整合后的数据能为业务运营提供洞察&#xff0c;为企业决策支持和创造组织价值开辟新的可能性。与商务智能&…

浅谈线程组插件之jp@gc - Ultimate Thread Group

浅谈线程组插件之jpgc - Ultimate Thread Group jpgc - Ultimate Thread Group是JMeter的一个强大且灵活的扩展插件&#xff0c;由JMeter Plugins Project提供。它为性能测试提供了超越JMeter原生线程组的更精细的控制能力&#xff0c;允许用户根据复杂的场景设计自定义负载模…

【TFT电容屏】

TFT电容屏基础知识补课 前言一、入门知识1.1 引脚介绍1.1.1 显示部分片选指令选择写指令读操作复位并行数据接口 1.1.2 背光电源背光电源 1.1.3 触摸IIC接口外部中断接口复位NC 1.2 驱动介绍1.3 FSMC介绍 总结 前言 跟着阳桃电子的学习⇨逐个细讲触摸屏接口定义–STM32单片机…

科普文:JUC系列之ForkJoinPool源码解读ForkJoinWorkerThread

科普文&#xff1a;JUC系列之ForkJoinPool基本使用及原理解读-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读概叙-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读WorkQueue-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读ForkJoinTask…

复现sql注入漏洞

Less-1 字符型注入 页面如下&#xff1a; 我们先输入“?id1”看看结果&#xff1a; 页面显示错误信息中显示提交到sql中的“1”在通过sql语句构造后形成“1" LIMIT 0, 1”&#xff0c;其中多了一个“”&#xff0c;那么&#xff0c;我们的任务就是——逃脱出单引号的控制…

petalinux安装成功后登录Linux出现密码账号不正确

安装完Linux系统后发现登陆开发板上的Linux系统登陆一直错误&#xff0c;但你输入的账号和密码确确实实是“root”&#xff0c;但仍然一直在重复登陆。 这个时候就会怀疑自己是不是把密码改了&#xff0c;导致错误&#xff0c;然后又重新创建petalinux工程。 其实这个时候不需…

2024年第二季度HDD出货量和容量分析

概述 根据Trendfocus, Inc.发布的《SDAS: HDD Information Service CQ2 24 Quarterly Update – Executive Summary》报告&#xff0c;2024年第二季度硬盘驱动器(HDD)出货量和容量均出现了显著增长。总体来看&#xff0c;HDD出货量较上一季度增长2%&#xff0c;达到3028万块&a…

MySQLDM笔记-查询库中是否存在列出的表名及查询库中列出的不存在的表名

如下表名&#xff1a; aaa,bb,cc,ccs,dds,csdf,csdfs,sdfa,werwe,csdfsd 在MySQL库中&#xff0c;查询哪些表名在数据库中 SELECT table_name FROM information_schema.tables WHERE table_schema your_database_name_here AND table_name IN (aaa, bb, cc, ccs, dds, csdf…

硬件电路学习记录(七)——全面概述MOS管

目录 1.NMOS&#xff1a; 工作原理 特性 应用 2.PMOS&#xff1a; PMOS的结构与工作原理 结构 工作原理 增强型PMOS与耗尽型PMOS 增强型PMOS&#xff08;Enhancement Mode PMOS&#xff09; 耗尽型PMOS&#xff08;Depletion Mode PMOS&#xff09; 应用 PMOS的工…

不同角色路由权限配置(六)

一、启用方式 配置开启config/config.ts。同时需要 src/access.ts 提供权限配置 export default {access: {},// access 插件依赖 initial State 所以需要同时开启initialState: {}, };这里以扩展的路由配置为例&#xff0c;配置只有admin权限才能查看的页面 1、在src/acces…

新华三H3CNE网络工程师认证—路由基础

我们的一个个网络其实是由不同的广播域构成的&#xff0c;而路由器的作用就是用来连接不同的广播域。那么不同广播域之间是如何通信的呢&#xff1f;比如有三个网段&#xff0c;1.0、2.0和3.0。网段1.0和网段2.0通信需要构造数据包&#xff0c;源是1.1&#xff0c;目标去往2.1。…