数据结构----------贪心算法

news2024/11/14 15:01:45

什么是贪心算法?

贪心算法(Greedy Algorithm)是一种在问题求解过程中,每一步都采取当前状态下最优(即最有利)的选择,从而希望导致最终的全局最优解的算法策略。
贪心算法的核心思想是做选择时,每一步只考虑当前情况的最佳选择,不考虑整体情况,也不考虑这个选择将如何影响未来的选择。
下面是贪心算法的一些基本特点:

  1. 局部最优选择:在每一步选择中都采取当前状态下最优的选择。
  2. 不可回溯:一旦做出了选择,就不可撤销,也就是选择了某一部分的解之后,就不再考虑这个选择之前的其他可能性。
  3. 最优子结构:问题的最优解包含其子问题的最优解,子问题的最优解能被合并为问题的最优解。
    贪心算法适用于具有“最优子结构”和“贪心选择性质”的问题。
    以下是一些可以用贪心算法解决的问题的例子:
  • 找零问题:给出一个金额,如何用最少数量的硬币找零。
  • 哈夫曼编码:用于数据压缩的最优前缀编码方法。
  • 图的最小生成树:例如普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
  • 图的最短路径问题:迪杰斯特拉算法(Dijkstra’s Algorithm)在某些条件下可以看作是贪心算法。

贪心算法的步骤通常如下:
4. 初始化:根据问题设定,选择一个初始解作为当前解。
5. 选择:根据某种贪心标准,从候选集合中选出最优解的一个元素,并将它添加到当前解中。
6. 更新:根据上一步的选择,更新候选集合,排除不再可行的选项。
7. 循环:重复“选择”和“更新”步骤,直到达到问题的解。
贪心算法并不总是能得到最优解,它只有在问题具有贪心选择性质时才有效。对于一些问题,贪心算法可以得到最优解,而对于其他问题,贪心算法可能只能得到近似最优解。
贪心算法虽然简单高效,但在某些问题上可能无法得到最优解。以下是贪心算法的一些局限性:
8. 不能保证全局最优解:贪心算法在选择每一步的局部最优解时,可能不会导致全局最优解。这是因为贪心算法没有从整体的角度考虑问题,而是基于当前情况做出选择。
9. 不可回溯:贪心算法一旦做出选择,就不会撤销这个选择,即使这个选择后来被证明是错误的。这种不可回溯的特性意味着贪心算法可能无法纠正之前的错误选择。
10. 不适用于所有问题:贪心算法只适用于具有“贪心选择性质”和“最优子结构”的问题。如果一个问题不满足这些特性,贪心算法就不能保证找到最优解。

在这里插入图片描述

谈心算法的局限性

以下是贪心算法局限性的具体例子:

  • 组合问题:在组合问题中,选择一个元素可能会影响其他元素的选择。贪心算法可能无法处理这种相互依赖的情况。
  • 需要考虑所有可能组合的问题:对于需要考虑所有可能组合的问题,贪心算法可能无法工作,因为它只考虑当前的最优选择,而不是所有可能的组合。
  • 动态规划问题:对于需要考虑过去选择对未来决策影响的问题,贪心算法通常不是最佳选择。动态规划算法更适合这类问题,因为它考虑了所有可能的选择。
    以下是贪心算法局限性的具体表现:
  • 不能处理具有重叠子问题的情况:贪心算法通常不适用于具有重叠子问题的问题,因为它不会存储子问题的解以供后续使用。
  • 可能需要额外的数据结构来支持:在某些情况下,贪心算法可能需要额外的数据结构(如优先队列)来有效地选择下一个最优元素,这可能会增加算法的复杂度。
  • 局部最优解可能不构成全局最优解:在某些问题中,局部最优解的集合并不一定能够组合成全局最优解。
  • 难以证明最优性:对于某些问题,证明贪心算法的最优性可能非常困难,甚至是不可能的。
    因此,在使用贪心算法时,需要仔细分析问题是否适合贪心策略,以及是否存在更有效的算法(如动态规划、回溯算法等)来解决问题。

在这里插入图片描述

贪心算法和动态规划的区别是什么?

贪心算法和动态规划是两种不同的算法设计技术,它们在解决问题的方式上有显著的区别。以下是它们之间的一些主要区别:

  1. 问题解决策略
    • 贪心算法:在每一步选择中都采取当前状态下最优的选择,即局部最优解,不考虑这一选择将如何影响未来的选择。
    • 动态规划:将复杂问题分解为多个子问题,每个子问题只解决一次,并将子问题的解存储起来以供后续使用,从而避免重复计算。
  2. 最优子结构
    • 贪心算法:通常假设通过局部最优选择可以构造出全局最优解,但这并不总是成立。
    • 动态规划:明确利用问题的最优子结构性质,即问题的最优解包含其子问题的最优解。
  3. 决策过程
    • 贪心算法:做出决策后通常不可回溯,一旦选择了某个选项,就会一直使用这个选项。
    • 动态规划:考虑所有可能的决策,并选择导致最优解的决策路径。
  4. 适用范围
    • 贪心算法:适用于具有贪心选择性质的问题,即局部最优选择能导致全局最优解。
    • 动态规划:适用于具有重叠子问题和最优子结构性质的问题。
  5. 算法复杂度
    • 贪心算法:通常实现简单,运行效率高,但可能无法保证找到最优解。
    • 动态规划:可能需要更多的计算和存储空间,因为它需要存储所有子问题的解,但可以保证找到最优解。
  6. 正确性证明
    • 贪心算法:证明其正确性通常比较困难,需要证明局部最优解能组合成全局最优解。
    • 动态规划:正确性通常基于数学归纳法,通过证明最优解包含子问题最优解来证明。
  7. 例子
    • 贪心算法:找零问题、哈夫曼编码、图的最小生成树(如克鲁斯卡尔算法)。
    • 动态规划:背包问题、最长公共子序列、最短路径问题(如贝尔曼-福特算法)。
      总结来说,贪心算法是一种简化版的动态规划,它在每一步都做出最优选择,而不考虑这个选择对未来决策的影响。动态规划则考虑所有可能的决策,并通过子问题的最优解来构造全局最优解。贪心算法在某些问题上可能非常高效,但它不一定能找到最优解,而动态规划则可以保证在适用的问题上找到最优解。

在这里插入图片描述

贪心算法上楼梯

"贪心算法上楼梯"这个问题通常可以这样描述:假设你正在上楼梯,每次可以向上走1步、2步或3步,问到达楼梯顶部有多少种不同的走法。
这个问题实际上并不适合直接用贪心算法来解决,因为贪心算法在选择每一步时只考虑当前最优的选择,而不考虑未来的影响。在这个楼梯问题中,贪心选择并不一定能得到最优解,因为可能需要根据剩余楼梯的步数来调整每一步的选择。
不过,如果我们假设每一步都可以选择走1步、2步或3步,并且我们希望用最少的步数到达楼梯顶部,那么我们可以尝试用贪心算法的思想来解决这个问题。以下是使用贪心算法解决这个问题的步骤:

  1. 初始化:确定楼梯的总步数n
  2. 贪心选择:在每一步尽可能多地走,优先选择3步,然后是2步,最后是1步。
  3. 计算步数:根据楼梯的总步数n,计算每一步选择的次数。
    下面是一个简单的实现:
#include <stdio.h>
// 使用贪心算法计算上楼梯的最少步数
void greedyStairs(int n) {
    int steps = 0; // 总步数
    int threeSteps = 0; // 走3步的次数
    int twoSteps = 0; // 走2步的次数
    int oneStep = 0; // 走1步的次数
    // 首先尽可能多地走3步
    threeSteps = n / 3;
    n -= threeSteps * 3;
    // 然后尽可能多地走2步
    twoSteps = n / 2;
    n -= twoSteps * 2;
    // 最后走剩下的1步
    oneStep = n;
    // 输出结果
    printf("走3步的次数: %d\n", threeSteps);
    printf("走2步的次数: %d\n", twoSteps);
    printf("走1步的次数: %d\n", oneStep);
    printf("总步数: %d\n", threeSteps + twoSteps + oneStep);
}
int main() {
    int n;
    printf("请输入楼梯的总步数: ");
    scanf("%d", &n);
    greedyStairs(n);
    return 0;
}

请注意,这个贪心算法的实现仅仅计算了到达楼梯顶部所需的最少步数,并没有计算出所有可能的走法。实际上,要计算所有可能的走法,通常需要使用动态规划或递归算法。

贪心算法找零

在这里插入图片描述

贪心算法的一个经典例子是找零问题。在这个问题中,你有一个收银机,里面有一定数量的硬币,比如1元、5元、10元、20元和50元。当顾客需要找零时,你的目标是使用最少数量的硬币来凑成所需找零的金额。
以下是使用贪心算法解决找零问题的步骤:

  1. 初始化:确定需要找零的金额。
  2. 贪心选择:在每一步,选择面值最大的硬币,只要它不超过还需要找零的金额。
  3. 更新剩余金额:从需要找零的金额中减去所选硬币的面值。
  4. 重复:重复步骤2和步骤3,直到剩余找零金额为0。
    下面是找零问题的一个简单实现:
#include <stdio.h>
// 硬币面值的数组,按从大到小的顺序排列
int coins[] = {50, 20, 10, 5, 1};
int numCoins = sizeof(coins) / sizeof(coins[0]);
// 使用贪心算法计算找零所需的最少硬币数量
void greedyChange(int amount) {
    int coinCount = 0; // 硬币总数
    for (int i = 0; i < numCoins; i++) {
        // 选择当前最大的硬币,只要它不超过剩余金额
        int coin = coins[i];
        int count = amount / coin; // 可以使用该硬币的数量
        coinCount += count;
        amount -= count * coin; // 更新剩余金额
        printf("使用面值%d元的硬币%d个\n", coin, count);
    }
    printf("总共需要%d个硬币\n", coinCount);
}
int main() {
    int amount;
    printf("请输入需要找零的金额: ");
    scanf("%d", &amount);
    greedyChange(amount);
    return 0;
}

在这个例子中,贪心算法能够给出最优解,因为我们假设硬币的面值是标准的,并且找零问题具有贪心选择性质,即每次选择最大面值的硬币不会影响后续选择的最优性。
贪心算法的其他例子包括:

  • 哈夫曼编码:用于数据压缩的最优前缀编码方法。
  • 图的最小生成树:例如普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
  • 图的最短路径问题:迪杰斯特拉算法(Dijkstra’s Algorithm)在某些条件下可以看作是贪心算法。
    这些例子展示了贪心算法在不同问题领域的应用,尽管在某些情况下需要额外的条件来保证贪心算法能够得到最优解。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1983400.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【深度学习】DeepSpeed,ZeRO 数据并行的三个阶段是什么?

文章目录 ZeRO实验实验设置DeepSpeed ZeRO Stage-2 实验性能比较进一步优化DeepSpeed ZeRO Stage-3 和 CPU 卸载结论ZeRO ZeRO(Zero Redundancy Optimizer)是一种用于分布式训练的大规模深度学习模型的优化技术。它通过分片模型状态(参数、梯度和优化器状态)来消除数据并行…

Flink异步IO 调用算法总是超时

记录一次使用Flink 异步调用IO 总是超时的bug 注&#xff1a;博主使用的版本就是&#xff1a;<flink.version>1.16.1</flink.version> 起因&#xff1a; 因公司业务需要&#xff0c;使用Flink对数据进行流式处理&#xff0c;具体处理流程就是&#xff0c;从kafka…

PageRank算法与TextRank算法

PageRank PageRank 是一种用于计算网页重要性的算法&#xff0c;其核心思想源自随机浏览模型。这个模型假设一个网络中的用户通过随机点击链接在网页之间跳转&#xff0c;并根据网页的链接结构计算每个网页的重要性。 假设三个网页按以下方式连接&#xff0c;计算每个网页的PR值…

【零基础实战】基于物联网的人工淡水湖养殖系统设计

文章目录 一、前言1.1 项目介绍1.1.1 开发背景1.1.2 项目实现的功能1.1.3 项目硬件模块组成1.1.4 ESP8266工作模式配置 1.2 系统设计方案1.2.1 关键技术与创新点1.2.2 功能需求分析1.2.3 现有技术与市场分析1.2.4 硬件架构设计1.2.5 软件架构设计1.2.6 上位机开发思路 1.3 系统…

Robot Operating System——深度解析单线程执行器(SingleThreadedExecutor)执行逻辑

大纲 创建SingleThreadedExecutor新增Nodeadd_nodetrigger_entity_recollectcollect_entities 自旋等待get_next_executablewait_for_workget_next_ready_executableTimerSubscriptionServiceClientWaitableAnyExecutable execute_any_executable 参考资料 在ROS2中&#xff0c…

ARM知识点二

一、指令 指令的生成过程 指令执行过程示例 if (a 0) {x 0; } else {x x 3; } //翻译为 cmp r0,#0 MOVEQ R1,#0 ADDGT R1,R1,#3指令获取&#xff1a;从Flash中读取 CMP R0, #0&#xff0c;控制器开始执行。 指令解码&#xff1a;解码器解析 CMP 指令&#xff0c;ALU比较R…

DAMA学习笔记(十)-数据仓库与商务智能

1.引言 数据仓库&#xff08;Data Warehouse&#xff0c;DW&#xff09;的概念始于20世纪80年代。该技术赋能组织将不同来源的数据整合到公共的数据模型中去&#xff0c;整合后的数据能为业务运营提供洞察&#xff0c;为企业决策支持和创造组织价值开辟新的可能性。与商务智能&…

浅谈线程组插件之jp@gc - Ultimate Thread Group

浅谈线程组插件之jpgc - Ultimate Thread Group jpgc - Ultimate Thread Group是JMeter的一个强大且灵活的扩展插件&#xff0c;由JMeter Plugins Project提供。它为性能测试提供了超越JMeter原生线程组的更精细的控制能力&#xff0c;允许用户根据复杂的场景设计自定义负载模…

【TFT电容屏】

TFT电容屏基础知识补课 前言一、入门知识1.1 引脚介绍1.1.1 显示部分片选指令选择写指令读操作复位并行数据接口 1.1.2 背光电源背光电源 1.1.3 触摸IIC接口外部中断接口复位NC 1.2 驱动介绍1.3 FSMC介绍 总结 前言 跟着阳桃电子的学习⇨逐个细讲触摸屏接口定义–STM32单片机…

科普文:JUC系列之ForkJoinPool源码解读ForkJoinWorkerThread

科普文&#xff1a;JUC系列之ForkJoinPool基本使用及原理解读-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读概叙-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读WorkQueue-CSDN博客 科普文&#xff1a;JUC系列之ForkJoinPool源码解读ForkJoinTask…

复现sql注入漏洞

Less-1 字符型注入 页面如下&#xff1a; 我们先输入“?id1”看看结果&#xff1a; 页面显示错误信息中显示提交到sql中的“1”在通过sql语句构造后形成“1" LIMIT 0, 1”&#xff0c;其中多了一个“”&#xff0c;那么&#xff0c;我们的任务就是——逃脱出单引号的控制…

petalinux安装成功后登录Linux出现密码账号不正确

安装完Linux系统后发现登陆开发板上的Linux系统登陆一直错误&#xff0c;但你输入的账号和密码确确实实是“root”&#xff0c;但仍然一直在重复登陆。 这个时候就会怀疑自己是不是把密码改了&#xff0c;导致错误&#xff0c;然后又重新创建petalinux工程。 其实这个时候不需…

2024年第二季度HDD出货量和容量分析

概述 根据Trendfocus, Inc.发布的《SDAS: HDD Information Service CQ2 24 Quarterly Update – Executive Summary》报告&#xff0c;2024年第二季度硬盘驱动器(HDD)出货量和容量均出现了显著增长。总体来看&#xff0c;HDD出货量较上一季度增长2%&#xff0c;达到3028万块&a…

MySQLDM笔记-查询库中是否存在列出的表名及查询库中列出的不存在的表名

如下表名&#xff1a; aaa,bb,cc,ccs,dds,csdf,csdfs,sdfa,werwe,csdfsd 在MySQL库中&#xff0c;查询哪些表名在数据库中 SELECT table_name FROM information_schema.tables WHERE table_schema your_database_name_here AND table_name IN (aaa, bb, cc, ccs, dds, csdf…

硬件电路学习记录(七)——全面概述MOS管

目录 1.NMOS&#xff1a; 工作原理 特性 应用 2.PMOS&#xff1a; PMOS的结构与工作原理 结构 工作原理 增强型PMOS与耗尽型PMOS 增强型PMOS&#xff08;Enhancement Mode PMOS&#xff09; 耗尽型PMOS&#xff08;Depletion Mode PMOS&#xff09; 应用 PMOS的工…

不同角色路由权限配置(六)

一、启用方式 配置开启config/config.ts。同时需要 src/access.ts 提供权限配置 export default {access: {},// access 插件依赖 initial State 所以需要同时开启initialState: {}, };这里以扩展的路由配置为例&#xff0c;配置只有admin权限才能查看的页面 1、在src/acces…

新华三H3CNE网络工程师认证—路由基础

我们的一个个网络其实是由不同的广播域构成的&#xff0c;而路由器的作用就是用来连接不同的广播域。那么不同广播域之间是如何通信的呢&#xff1f;比如有三个网段&#xff0c;1.0、2.0和3.0。网段1.0和网段2.0通信需要构造数据包&#xff0c;源是1.1&#xff0c;目标去往2.1。…

3.6 上下文菜单

上下文菜单 上下文菜单就是常见的右键菜单(弹出式菜单)。 显示上下文菜单&#xff0c;阻塞函数 BOOL TrackPopupMenu(HMENU hMenu, //菜单句柄UINT uFlags, //显示方式int x, //水平位置&#xff0c;屏幕坐标系int y, //垂直位置&#xff0c;屏幕坐标系UINT nReserved, //…

Cartopy简介和安装

Cartopy 是一个开源免费的第三方 Python 扩展包&#xff0c;由英国气象办公室的科学家们开发&#xff0c;支持 Python 2.7 和 Python 3&#xff0c;致力于使用最简单直观的方式生成地图&#xff0c;并提供对 matplotlib 友好的协作接口。初学Cartopy&#xff0c;欢迎指正&#…

Leetcode—186. 反转字符串中的单词 II【中等】Plus

2024每日刷题&#xff08;152&#xff09; Leetcode—186. 反转字符串中的单词 II 实现代码 class Solution { public:void reverseW(vector<char>& s, int n) {int i 0;int j 0;while(i < n) {while(i < j || i < n && s[i] ) {i;}while(j &…