Golang是如何实现动态数组功能的?Slice切片原理解析

news2024/9/23 5:17:47

Hi 亲爱的朋友们,我是 k 哥。今天,咱们聊一聊Golang 切片。

当我们需要使用数组,但是又不能提前定义数组大小时,可以使用golang的动态数组结构,slice切片。在 Go 语言的众多特性里,slice 是我们经常用到的数据结构。但您有没有想过,它在背后是怎么工作的呢?接下来,咱们就一起仔仔细细地研究研究 slice 的底层到底是咋回事。比如它的底层数据结构是咋样的,又是怎么和数组配合实现动态数组功能的。把这些弄明白了,咱们写代码不光能更高效,还能躲开不少容易出错的地方。

原理

数据结构

我们每定义一个slice变量,golang底层都会构建一个slice结构的对象。slice结构体由3个成员变量构成:

  • array表示数组指针,数组用于存储数据。

  • len表示切片长度,也就是数组index从0到len-1已存储数据。

  • cap表示切片容量,当切片长度超过最大容量时,需要扩容申请更大长度的数组。

type slice struct {
    array unsafe.Pointer // 数组指针
    len   int // 切片长度
    cap   int // 切片容量
}

切片扩容

当我们往切片中append时,如果新添加数据会导致切片的len>cap,则会触发扩容。申请容量更大的新数组,并将旧数组数据复制到新数组。

当切片扩容时,新申请的数组长度要满足3个需求:

  1. 数组要能承载本次数据append进去,这是基本要求。

  2. 除了1中的基本要求,可以额外多申请一部分空间,防止后续append频繁扩容,引起性能问题。

  3. 额外申请的空间不能过大,防止内存浪费。

为了满足上述的3个要求,golang底层的扩容策略是如果需要的容量比旧容量大很多,则不申请额外的空间;如果需要的容量比旧容量并没有大很多,则可以多申请一些额外的内存空间。具体策略如下:

  1. 如果本次append之后,需要的容量大于旧切片容量*2,则新切片容量等于需要的容量。

  2. 如果旧切片容量<256,则新切片容量为旧切片容量*2。

  3. 否则,以公式newcap += (newcap + 3*threshold) / 4迭代,直到newcap大于需要的容量为止,将newcap作为新切片容量。

// growslice handles slice growth during append.
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
// and it returns a new slice with at least that capacity, with the old data
// copied into it.
// The new slice's length is set to the old slice's length,
// NOT to the new requested capacity.
// This is for codegen convenience. The old slice's length is used immediately
// to calculate where to write new values during an append.
// 参数cap表示本次append之后需要的切片容量
func growslice(et *_type, old slice, cap int) slice {
    // 扩容策略,决定扩容后切片容量newcap,也就是需要申请的新数组长度。
    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        const threshold = 256
        if old.cap < threshold {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                // Transition from growing 2x for small slices
                // to growing 1.25x for large slices. This formula
                // gives a smooth-ish transition between the two.
                newcap += (newcap + 3*threshold) / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }
    
    // 计算新切片的容量、长度
    var overflow bool
    var lenmem, newlenmem, capmem uintptr
    lenmem = uintptr(old.len) * et.size
    newlenmem = uintptr(cap) * et.size
    capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
    capmem = roundupsize(capmem)
    newcap = int(capmem / et.size)
    
    // 数组内存申请
    var p unsafe.Pointer
    if et.ptrdata == 0 {
        p = mallocgc(capmem, nil, false)
    } else {
        p = mallocgc(capmem, et, true)
    }
    
    // 数据复制
    memmove(p, old.array, lenmem)
    
    // 构建新的切片返回
    return slice{p, old.len, newcap}
}

for 循环的坑

在for和for range循环中,对于循环迭代变量,它的作用域是整个循环。在循环时,会创建一个变量,每次迭代都会把值赋给同一个地址的变量。如果我们的代码有引用这个变量,可能会出现不符合预期的结果。

比如下面对for循环迭代变量i的使用,会输出不符合预期的结果。

func main() {
    var out []*int
    for i := 0; i < 3; i++ {
        out = append(out, &i)
    }
    fmt.Println("Values:", *out[0], *out[1], *out[2]) // 输出 Values: 3 3 3
    fmt.Println("Addresses:", out[0], out[1], out[2]) // 输出 Addresses: 0x40e020 0x40e020 0x40e020
}

原因是在每次迭代中,我们将变量 i 的地址附加到 out 切片,但由于它是同一个变量,因此我们附加相同的地址,该地址最终包含分配给 i 的最后一个值。解决方案之一是将循环变量复制到新变量中:

 for i := 0; i < 3; i++ {
+   i := i // Copy i into a new variable.
    out = append(out, &i)
 }

改正之后输出符合预期的结果:

Values: 0 1 2
Addresses: 0x40e024 0x40e028 0x40e032

又比如下面for range循环,对迭代变量v的使用,也会输出不符合预期的结果。

package main

import "fmt"

type User struct {
    Name string
    Age  int
}

func main() {
    userMap := make(map[string]*User)
    users := []User{
        {Name: "a", Age: 22},
        {Name: "b", Age: 23},
        {Name: "c", Age: 21},
    }

    for _, v := range users {
        userMap[v.Name] = &v
    }

    for name, user := range userMap {
        fmt.Println(name, "=>", user.Age, ",Addresses:", &user) // 输出一下user的地址
    }
}

上面的代码输出不符合预期的结果,三个人的年龄和数据地址变成了相同值:

a => 21 ,Addresses: 0xc000012028
b => 21 ,Addresses: 0xc000012028
c => 21 ,Addresses: 0xc000012028

原因跟for循环一样,在循环时,创建了变量v,后续每次迭代都把值拷贝给变量v,导致循环结束后,拷贝的是最后一个,因此输出的age都是21。解决方案之一也是将循环变量复制到新变量中:

for _, v := range users {
+       temp := v
        userMap[v.Name] = &temp
}

注意:为了防止循环迭代变量误用导致bug,在Go 1.22中,循环迭代变量的作用域,不再是循环作用域,而是迭代作用域,每次迭代都会申请一个新变量。Fixing For Loops in Go 1.22

实践经验

  1. 切片容量预分配。如果提前能预估切片容量,最好提前在make时就分配好容量,避免后续go底层的再次扩容,在一定程度上能提升代码执行效率。

  2. 注意对slice的循环,看是否需要将循环迭代变量赋值到一个临时变量使用,防止bug。

高频面试题

  1. 数组和切片的区别 (基本必问)

  2. 切片的扩容策略是怎样的?

  3. for range 的时候它的地址会发生变化么?for 循环遍历 slice 有什么问题?

  4. 拷贝大切片一定比小切片代价大吗?

对于浅拷贝,比如下面的切片赋值,拷贝大切片和小切片代价一样。原因是浅拷贝a和b共用底层数组,不需要重新申请数组空间,做数组数据迁移,而只需要将a的slice数据结构array、len、cap原样赋值给b的slice。

a:=[]int{1,2}
b:=a

对于深拷贝,比如调用copy函数拷贝,拷贝大切片比小切片代价大。原因是深拷贝a和b底层数组不共用,需要重新申请数组空间,并将a中数组元素复制到b,大切片的数据量大,因此数组申请和数据复制的代价也高一些。

a:=[]int{1,2}
b:=make([]int,0)
copy(b,a)

原文链接:<<Golang是如何实现动态数组功能的?Slice切片原理解析>>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1976737.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 MSER 4.2 HOG特征提取 4.3 SVM 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2017b 3.部分核心程序 &#xff08;完整版代码包含中…

黑马头条vue2.0项目实战(四)——首页—文章列表

目录 1. 头部导航栏 1.1 页面布局 1.2 样式调整中遇到的问题 2. 频道列表 2.1 页面布局 2.2 样式调整 2.3 展示频道列表 3. 文章列表 3.1 思路分析 3.2 使用 List 列表组件 3.3 加载文章列表数据 3.4 下拉刷新 3.5 设置上下padding固定头部和频道列表 3.6 记住列…

48天笔试训练错题——day40

目录 选择题 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 编程题 1. 发邮件 2. 最长上升子序列 选择题 1. DNS 劫持又称域名劫持&#xff0c;是指在劫持的网络范围内拦截域名解析的请求&#xff0c;分析请求的域名&#xff0c;把审查范围以外的请求放行&#xff0c;否则返回…

大数据Flink(一百零七):阿里云Flink的应用场景

文章目录 阿里云Flink的应用场景 一、​​​​​​​背景信息 二、​​​​​​​​​​​​​​部门场景 三、​​​​​​​​​​​​​​技术领域 1、​​​​​​​​​​​​​​实时ETL和数据流 2、​​​​​​​​​​​​​​实时数据分析 3、​​​​​​​事…

8.3总结

1.改进渲染 这个渲染为了美观我做了很久花了好多时间&#xff0c;&#xff0c;&#xff0c; // 加载头像图像InputStream inputStream new ByteArrayInputStream(message.getFileBytes());Image image new Image(inputStream); // 第二个参数表示是否缓存图片&#xff0c;根…

达梦数据库dsc集群动态添加节点

前提条件&#xff1a;在安装好的的dsc集群&#xff1a;达梦数据库dsc集群保姆级部署文档_达梦数据库文档-CSDN博客上动态添加节点 1、环境信息 扩展节点信息&#xff1a; 操作环境&#xff1a;VMware Workstation 16 Pro dmdsc集群 机器ip 主机名 操作系统 资源配置 实…

mac中dyld[5999]: Library not loaded: libssl.3.dylib解决方法

需要重新安装下openssl3.0版本 brew reinstall openssl3.0 安装后执行还是报错&#xff0c;需要找到openssl的安装路径 /opt/homebrew/Cellar/openssl3.0/3.0.14/lib/ 将libssl.3.dylib和libcrypto.3.dylib拷贝到自己的二进制文件同目录下&#xff0c;再执行二进制文件就可…

YUM软件包管理工具:更改YUM源、配置本地YUM仓库

文章目录 YUM软件包管理工具更改YUM源配置过程网络出错&#xff0c;配置网卡 本地YUM仓库配置挂载配置本地yum源 YUM软件包管理工具 YUM&#xff08;Yellowdog Updater, Modified&#xff09;是一个在Linux系统中广泛使用的开源软件包管理工具&#xff0c;尤其常见于Fedora、R…

图论① dfs | Java | LeetCode 797,Kama 98 邻接表实现(未完成)

797 所有可能路径 https://leetcode.cn/problems/all-paths-from-source-to-target/description/ 输入&#xff1a;graph [[1,2],[3],[3],[]] 题目分析&#xff0c;这里 class Solution {//这个不是二维数组&#xff0c;而是listList<List<Integer>> res new Ar…

【Python系列】Python 字典合并

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【教学类-72-01】20240803建筑对称图纸01

背景需求 通义万相下载“对称建筑&#xff0c;简笔画” 我想把“对称建筑”做成对称的样式&#xff0c;类似《对称脸》 【教学类-36-12-01】20240302儿童对称正脸图&#xff08;一&#xff09;4图右脸4图左脸&#xff08;中班《幼儿园里朋友多》&#xff09;&#xff08;midj…

高等数学精解【4】

文章目录 平面方程直角坐标及基本运算 参考文献 平面方程 直角坐标及基本运算 向量的四则运算 下面由文心一言自动生成 向量的四则运算主要包括加法、减法、数乘&#xff08;标量乘法&#xff09;和数量积&#xff08;点积或内积&#xff09;&#xff0c;但通常不直接称为“除…

GuLi商城-商品服务-API-新增商品-获取分类关联的品牌

这个接口在上一篇文章中已经写过了&#xff0c;功能已经实现了&#xff0c;这里略

Vue3 核心模块源码解析

Vue3 核心模块源码解析 1、Vue3 模块源码解析1.1 compiler-core1.1.1 目录结构1.1.2 compile逻辑 1.2 reactivity1.2.1 目录结构1.2.2 reactivity逻辑 1.3 runtime-core1.3.1 目录结构1.3.2 runtime核心逻辑 1.4 runtime-dom1.4.1 主要功能 1.5 runtime-test1.5.1 目录结构1.5.…

深入理解接口测试:实用指南与最佳实践(一) 环境安装

​ ​ 您好&#xff0c;我是程序员小羊&#xff01; 前言 这一阶段是接口测试的学习&#xff0c;我们接下来的讲解都是使用Postman这款工具&#xff0c;当然呢Postman是现在一款非常流行的接口调试工具&#xff0c;它使用简单&#xff0c;而且功能也很强大。不仅测试人员会使用…

【linux】【操作系统】内核之system_call.s源码阅读

system_call.s汇编代码是 Linux 内核的一部分&#xff0c;负责处理系统调用、定时器中断、硬盘中断、软盘中断和并行端口中断。下面是各个部分的详细说明&#xff1a; 系统调用处理 (_system_call) 功能 处理系统调用请求。根据传入的系统调用编号 (%eax) 调用相应的系统调用…

Linux修炼之路之进程地址空间

目录 一&#xff1a;程序地址空间 二&#xff1a;相关细节知识 接下来的日子会顺顺利利&#xff0c;万事胜意&#xff0c;生活明朗-----------林辞忧 一&#xff1a;程序地址空间 1.在学习c/c时&#xff0c;经常会听到堆区&#xff0c;栈区&#xff0c;代码段&#xff0c;常量…

IoTDB 入门教程 企业篇②——IoTDB-Workbench可视化控制台

文章目录 一、前文二、首页三、实例管理四、系统管理五、查询六、测点管理 一、前文 IoTDB入门教程——导读 IoTDB-Workbench同样是通过联系天谋科技商务&#xff0c;请求免费试用的。 请求试用激活启动的操作步骤&#xff0c;详情请见&#xff1a;IoTDB 入门教程 企业篇①——…

SQL注入实例(sqli-labs/less-4)

0、初始页面 1、确定闭合符号 前两条判断是否为数值型注入&#xff0c;后两条判断字符型注入的闭合符号 ?id1 and 11 ?id1 and 12 ?id1" ?id1") 2、确定表的列数 ?id1") order by 3 -- 3、确定回显位置 ?id-1") union select 1,2,3 -- 4、爆库…

RabbitMQ 应用

目录 1. 7种工作模式 1.1 Simple&#xff08;简单模式&#xff09; 1.2 Work Queue&#xff08;工作队列&#xff09; 1.3 Publish/Subscribe&#xff08;发布/订阅&#xff09; 1.4 Routing&#xff08;路由模式&#xff09; 1.5 Topics&#xff08;通配符模式&#xff09; 1.…