使用Openvino部署C++的Yolov5时类别信息混乱问题记录
简单记录一下。
一、问题描述
问题描述:在使用Yolov5的onnx格式模型进行C++的Openvino进行模型部署时,通过读取classes.txt获得类别信息时,出现模型类别混乱,或者说根本就不给图像赋予类别标签的情况。
二、解决办法
通过debug程序,发现是读取txt文件时的问题,读入txt文件时,会读出几行空白的数据。
最终发现原因是classes.txt文件中,多了几个空白的换行。需要尽量留意,删除掉空白的换行。
三、部署测试代码
三个部分,需要提取配置好opencv和openvino
1.main.cpp
#include <opencv2/opencv.hpp>
#include <boost/filesystem.hpp>
#include <iostream>
#include <string>
#include "yolov5vino.h"
namespace fs = boost::filesystem;
YOLOv5VINO yolov5VINO;
int main() {
std::string sourceDir = "D:/work/C++Code/Yolov5Openvino/Test/testimgs";
std::string destDir = "D:/work/C++Code/Yolov5Openvino/Test/output";
std::string ModelPath = "D:/work/C++Code/Yolov5Openvino/Test/best.onnx";
std::string ClassesPath = "D:/work/C++Code/Yolov5Openvino/Test/classes.txt";
yolov5VINO.init(ModelPath, ClassesPath);
// 确保目标目录存在
if (!fs::exists(destDir)) {
fs::create_directories(destDir);
}
// 遍历源目录中的所有文件
for (fs::directory_iterator end, dir(sourceDir); dir != end; ++dir) {
if (fs::is_regular_file(dir->status())) {
std::string filePath = dir->path().string();
std::string fileName = dir->path().filename().string();
// 读取图片
cv::Mat img = cv::imread(filePath, cv::IMREAD_COLOR);
if (img.empty()) {
std::cerr << "Failed to load image: " << filePath << std::endl;
continue;
}
std::vector<Detection> outputs;
yolov5VINO.detect(img, outputs);
yolov5VINO.drawRect(img, outputs);
// 构造目标文件路径
std::string destFilePath = destDir + "/" + fileName;
// 保存图
if (!cv::imwrite(destFilePath, img)) {
std::cerr << "Failed to save image: " << destFilePath << std::endl;
}
else {
std::cout << "Saved image: " << destFilePath << std::endl;
}
}
}
return 0;
}
2.Yolv5nivo.h
#pragma once
#ifndef YOLOV5VINO_H
#define YOLOV5VINO_H
#include <fstream>
#include <opencv2/opencv.hpp>
#include <inference_engine.hpp>
#define NOT_NCS2
using namespace std;
using namespace InferenceEngine;
struct Detection
{
int class_id;
float confidence;
cv::Rect box;
};
class YOLOv5VINO
{
public:
YOLOv5VINO();
~YOLOv5VINO();
void init(string modelPath, string classPath);
cv::Mat formatYolov5(const cv::Mat& source);
void detect(cv::Mat& image, vector<Detection>& outputs);
void drawRect(cv::Mat& image, vector<Detection>& outputs);
void loadClassList(string classPath);
private:
float m_scoreThreshold = 0.5;
float m_nmsThreshold = 0.6;
float m_confThreshold = 0.5;
//"CPU","GPU","MYRIAD"
#ifdef NCS2
const std::string m_deviceName = "MYRIAD";
const std::string m_modelFilename = "configFiles/yolov5sNCS2.xml";
#else
const std::string m_deviceName = "CPU";
const std::string m_modelFilename = "best.onnx";
#endif // NCS2
const std::string m_classfile = "classes.txt";
size_t m_numChannels = 3;
size_t m_inputH = 416;
size_t m_inputW = 416;
size_t m_imageSize = 0;
std::string m_inputName = "";
std::string m_outputName = "";
const vector<cv::Scalar> colors = { cv::Scalar(255, 255, 0), cv::Scalar(0, 255, 0), cv::Scalar(0, 255, 255), cv::Scalar(255, 0, 0) };
InferRequest m_inferRequest;
Blob::Ptr m_inputData;
public:
vector<std::string> m_classNames;
//const vector<std::string> m_classNames = { "138A","8151","B1100","JH8161","RE85","S22","KA90","T105","TX2295" };
// const vector<string> m_classNames = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light" };
};
#endif
3.yolov5vino.cpp
#include "yolov5vino.h"
YOLOv5VINO::YOLOv5VINO()
{
}
YOLOv5VINO::~YOLOv5VINO()
{
}
void YOLOv5VINO::init(string modelPath, string classPath)
{
InferenceEngine::Core ie;
InferenceEngine::CNNNetwork network = ie.ReadNetwork(modelPath);
InputsDataMap inputs = network.getInputsInfo();
OutputsDataMap outputs = network.getOutputsInfo();
for (auto item : inputs)
{
m_inputName = item.first;
auto input_data = item.second;
input_data->setPrecision(Precision::FP32);
input_data->setLayout(Layout::NCHW);
input_data->getPreProcess().setColorFormat(ColorFormat::RGB);
std::cout << "input name = " << m_inputName << std::endl;
}
for (auto item : outputs)
{
auto output_data = item.second;
output_data->setPrecision(Precision::FP32);
m_outputName = item.first;
std::cout << "output name = " << m_outputName << std::endl;
}
auto executable_network = ie.LoadNetwork(network, m_deviceName);
m_inferRequest = executable_network.CreateInferRequest();
m_inputData = m_inferRequest.GetBlob(m_inputName);
m_numChannels = m_inputData->getTensorDesc().getDims()[1];
m_inputH = m_inputData->getTensorDesc().getDims()[2];
m_inputW = m_inputData->getTensorDesc().getDims()[3];
m_imageSize = m_inputH * m_inputW;
loadClassList(classPath);
}
void YOLOv5VINO::loadClassList(string classPath)
{
std::ifstream ifs(classPath);
std::string line;
while (getline(ifs, line))
{
m_classNames.push_back(line);
}
ifs.close();
}
cv::Mat YOLOv5VINO::formatYolov5(const cv::Mat& source)
{
int col = source.cols;
int row = source.rows;
int max = MAX(col, row);
cv::Mat result = cv::Mat::zeros(max, max, CV_8UC3);
source.copyTo(result(cv::Rect(0, 0, col, row)));
return result;
}
void YOLOv5VINO::detect(cv::Mat& image, vector<Detection>& outputs)
{
cv::Mat input_image = formatYolov5(image);
cv::Mat blob_image;
cv::resize(input_image, blob_image, cv::Size(m_inputW, m_inputH));
cv::cvtColor(blob_image, blob_image, cv::COLOR_BGR2RGB);
float* data = static_cast<float*>(m_inputData->buffer());
for (size_t row = 0; row < m_inputH; row++) {
for (size_t col = 0; col < m_inputW; col++) {
for (size_t ch = 0; ch < m_numChannels; ch++) {
#ifdef NCS2
data[m_imageSize * ch + row * m_inputW + col] = float(blob_image.at<cv::Vec3b>(row, col)[ch]);
#else
data[m_imageSize * ch + row * m_inputW + col] = float(blob_image.at<cv::Vec3b>(row, col)[ch] / 255.0);
#endif // NCS2
}
}
}
auto start = std::chrono::high_resolution_clock::now();
m_inferRequest.Infer();
auto output = m_inferRequest.GetBlob(m_outputName);
const float* detection_out = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output->buffer());
//维度信息
const SizeVector outputDims = output->getTensorDesc().getDims();//1,6300[25200],9
float x_factor = float(input_image.cols) / m_inputW;
float y_factor = float(input_image.rows) / m_inputH;
float* dataout = (float*)detection_out;
const int dimensions = outputDims[2];
const int rows = outputDims[1];
vector<int> class_ids;
vector<float> confidences;
vector<cv::Rect> boxes;
for (int i = 0; i < rows; ++i)
{
float confidence = dataout[4];
if (confidence >= m_confThreshold)
{
float* classes_scores = dataout + 5;
cv::Mat scores(1, m_classNames.size(), CV_32FC1, classes_scores);
cv::Point class_id;
double max_class_score;
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
if (max_class_score > m_scoreThreshold)
{
confidences.push_back(confidence);
class_ids.push_back(class_id.x);
float x = dataout[0];
float y = dataout[1];
float w = dataout[2];
float h = dataout[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(cv::Rect(left, top, width, height));
}
}
dataout += dimensions;
}
vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, m_scoreThreshold, m_nmsThreshold, nms_result);
for (int i = 0; i < nms_result.size(); i++)
{
int idx = nms_result[i];
Detection result;
result.class_id = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
outputs.push_back(result);
}
std::sort(outputs.begin(), outputs.end(), [](const Detection& a, const Detection& b) {
return a.confidence > b.confidence; // 从大到小排序
});
}
void YOLOv5VINO::drawRect(cv::Mat& image, vector<Detection>& outputs)
{
int detections = outputs.size();
for (int i = 0; i < detections; ++i)
{
auto detection = outputs[i];
auto box = detection.box;
auto classId = detection.class_id;
const auto color = colors[classId % colors.size()];
rectangle(image, box, color, 3);
rectangle(image, cv::Point(box.x, box.y - 40), cv::Point(box.x + box.width, box.y), color, cv::FILLED);
putText(image, m_classNames[classId].c_str(), cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 1.5, cv::Scalar(0, 0, 0), 2);
}
}