昇思25天学习打卡营第18天|MindSporeK近邻算法实现红酒聚类学习- MindSpore进行KNN实验

news2024/12/29 11:08:49

基于MobileNetv2的垃圾分类

本文档主要介绍垃圾分类代码开发的方法。通过读取本地图像数据作为输入,对图像中的垃圾物体进行检测,并且将检测结果图片保存到文件中。

1、实验目的

  • 了解熟悉垃圾分类应用代码的编写(Python语言);
  • 了解Linux操作系统的基本使用;
  • 掌握atc命令进行模型转换的基本操作。

2、MobileNetv2模型原理介绍

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。

由于MobileNet网络中Relu激活函数处理低维特征信息时会存在大量的丢失,所以MobileNetV2网络提出使用倒残差结构(Inverted residual block)和Linear Bottlenecks来设计网络,以提高模型的准确率,且优化后的模型更小。 image.png

图中Inverted residual block结构是先使用1x1卷积进行升维,然后使用3x3的DepthWise卷积,最后使用1x1的卷积进行降维,与Residual block结构相反。Residual block是先使用1x1的卷积进行降维,然后使用3x3的卷积,最后使用1x1的卷积进行升维。

说明: 详细内容可参见MobileNetV2论文

3、实验环境

本案例支持win_x86和Linux系统,CPU/GPU/Ascend均可运行。

在动手进行实践之前,确保您已经正确安装了MindSpore。不同平台下的环境准备请参考《MindSpore环境搭建实验手册》。

4、数据处理

4.1数据准备
MobileNetV2的代码默认使用ImageFolder格式管理数据集,每一类图片整理成单独的一个文件夹, 数据集结构如下:

└─ImageFolder

├─train
│   class1Folder
│   ......
└─eval
    class1Folder
    ......
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
# 查看当前 mindspore 版本
!pip show mindspore
from download import download

# 下载data_en数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MindStudio-pc/data_en.zip" 
path = download(url, "./", kind="zip", replace=True)
from download import download
​
# 下载data_en数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MindStudio-pc/data_en.zip" 
path = download(url, "./", kind="zip", replace=True)

Downloading data from https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MindStudio-pc/data_en.zip (21.3 MB)

file_sizes: 100%|███████████████████████████| 22.4M/22.4M [00:00<00:00, 123MB/s]
Extracting zip file…
Successfully downloaded / unzipped to ./
from download import download

在这里插入图片描述

# 下载预训练权重文件
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/ComputerVision/mobilenetV2-200_1067.zip" 
path = download(url, "./", kind="zip", replace=True)
from download import download
​
# 下载预训练权重文件
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/ComputerVision/mobilenetV2-200_1067.zip" 
path = download(url, "./", kind="zip", replace=True)

Downloading data from https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/ComputerVision/mobilenetV2-200_1067.zip (25.5 MB)

file_sizes: 100%|███████████████████████████| 26.7M/26.7M [00:00<00:00, 109MB/s]
Extracting zip file…
Successfully downloaded / unzipped to ./
在这里插入图片描述

4.2数据加载
将模块导入,具体如下:

import math
import numpy as np
import os
import random

from matplotlib import pyplot as plt
from easydict import EasyDict
from PIL import Image
import numpy as np
import mindspore.nn as nn
from mindspore import ops as P
from mindspore.ops import add
from mindspore import Tensor
import mindspore.common.dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.vision as C
import mindspore.dataset.transforms as C2
import mindspore as ms
from mindspore import set_context, nn, Tensor, load_checkpoint, save_checkpoint, export
from mindspore.train import Model
from mindspore.train import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig

os.environ['GLOG_v'] = '3' # Log level includes 3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
os.environ['GLOG_logtostderr'] = '0' # 0:输出到文件,1:输出到屏幕
os.environ['GLOG_log_dir'] = '../../log' # 日志目录
os.environ['GLOG_stderrthreshold'] = '2' # 输出到目录也输出到屏幕:3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
set_context(mode=ms.GRAPH_MODE, device_target="CPU", device_id=0) # 设置采用图模式执行,设备为Ascend#
import math
import numpy as np
import os
import random
​
from matplotlib import pyplot as plt
from easydict import EasyDict
from PIL import Image
import numpy as np
import mindspore.nn as nn
from mindspore import ops as P
from mindspore.ops import add
from mindspore import Tensor
import mindspore.common.dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.vision as C
import mindspore.dataset.transforms as C2
import mindspore as ms
from mindspore import set_context, nn, Tensor, load_checkpoint, save_checkpoint, export
from mindspore.train import Model
from mindspore.train import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig
​
os.environ['GLOG_v'] = '3' # Log level includes 3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
os.environ['GLOG_logtostderr'] = '0' # 0:输出到文件,1:输出到屏幕
os.environ['GLOG_log_dir'] = '../../log' # 日志目录
os.environ['GLOG_stderrthreshold'] = '2' # 输出到目录也输出到屏幕:3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
set_context(mode=ms.GRAPH_MODE, device_target="CPU", device_id=0) # 设置采用图模式执行,设备为Ascend#

配置后续训练、验证、推理用到的参数:

垃圾分类数据集标签,以及用于标签映射的字典。

garbage_classes = {
    '干垃圾': ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服'],
    '可回收物': ['报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张'],
    '湿垃圾': ['菜叶', '橙皮', '蛋壳', '香蕉皮'],
    '有害垃圾': ['电池', '药片胶囊', '荧光灯', '油漆桶']
}

class_cn = ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服',
            '报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张',
            '菜叶', '橙皮', '蛋壳', '香蕉皮',
            '电池', '药片胶囊', '荧光灯', '油漆桶']
class_en = ['Seashell', 'Lighter','Old Mirror', 'Broom','Ceramic Bowl', 'Toothbrush','Disposable Chopsticks','Dirty Cloth',
            'Newspaper', 'Glassware', 'Basketball', 'Plastic Bottle', 'Cardboard','Glass Bottle', 'Metalware', 'Hats', 'Cans', 'Paper',
            'Vegetable Leaf','Orange Peel', 'Eggshell','Banana Peel',
            'Battery', 'Tablet capsules','Fluorescent lamp', 'Paint bucket']

index_en = {'Seashell': 0, 'Lighter': 1, 'Old Mirror': 2, 'Broom': 3, 'Ceramic Bowl': 4, 'Toothbrush': 5, 'Disposable Chopsticks': 6, 'Dirty Cloth': 7,
            'Newspaper': 8, 'Glassware': 9, 'Basketball': 10, 'Plastic Bottle': 11, 'Cardboard': 12, 'Glass Bottle': 13, 'Metalware': 14, 'Hats': 15, 'Cans': 16, 'Paper': 17,
            'Vegetable Leaf': 18, 'Orange Peel': 19, 'Eggshell': 20, 'Banana Peel': 21,
            'Battery': 22, 'Tablet capsules': 23, 'Fluorescent lamp': 24, 'Paint bucket': 25}

# 训练超参
config = EasyDict({
    "num_classes": 26,
    "image_height": 224,
    "image_width": 224,
    #"data_split": [0.9, 0.1],
    "backbone_out_channels":1280,
    "batch_size": 16,
    "eval_batch_size": 8,
    "epochs": 10,
    "lr_max": 0.05,
    "momentum": 0.9,
    "weight_decay": 1e-4,
    "save_ckpt_epochs": 1,
    "dataset_path": "./data_en",
    "class_index": index_en,
    "pretrained_ckpt": "./mobilenetV2-200_1067.ckpt" # mobilenetV2-200_1067.ckpt 
})
# 垃圾分类数据集标签,以及用于标签映射的字典。
garbage_classes = {
    '干垃圾': ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服'],
    '可回收物': ['报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张'],
    '湿垃圾': ['菜叶', '橙皮', '蛋壳', '香蕉皮'],
    '有害垃圾': ['电池', '药片胶囊', '荧光灯', '油漆桶']
}
​
class_cn = ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服',
            '报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张',
            '菜叶', '橙皮', '蛋壳', '香蕉皮',
            '电池', '药片胶囊', '荧光灯', '油漆桶']
class_en = ['Seashell', 'Lighter','Old Mirror', 'Broom','Ceramic Bowl', 'Toothbrush','Disposable Chopsticks','Dirty Cloth',
            'Newspaper', 'Glassware', 'Basketball', 'Plastic Bottle', 'Cardboard','Glass Bottle', 'Metalware', 'Hats', 'Cans', 'Paper',
            'Vegetable Leaf','Orange Peel', 'Eggshell','Banana Peel',
            'Battery', 'Tablet capsules','Fluorescent lamp', 'Paint bucket']
​
index_en = {'Seashell': 0, 'Lighter': 1, 'Old Mirror': 2, 'Broom': 3, 'Ceramic Bowl': 4, 'Toothbrush': 5, 'Disposable Chopsticks': 6, 'Dirty Cloth': 7,
            'Newspaper': 8, 'Glassware': 9, 'Basketball': 10, 'Plastic Bottle': 11, 'Cardboard': 12, 'Glass Bottle': 13, 'Metalware': 14, 'Hats': 15, 'Cans': 16, 'Paper': 17,
            'Vegetable Leaf': 18, 'Orange Peel': 19, 'Eggshell': 20, 'Banana Peel': 21,
            'Battery': 22, 'Tablet capsules': 23, 'Fluorescent lamp': 24, 'Paint bucket': 25}
​
# 训练超参
config = EasyDict({
    "num_classes": 26,
    "image_height": 224,
    "image_width": 224,
    #"data_split": [0.9, 0.1],
    "backbone_out_channels":1280,
    "batch_size": 16,
    "eval_batch_size": 8,
    "epochs": 10,
    "lr_max": 0.05,
    "momentum": 0.9,
    "weight_decay": 1e-4,
    "save_ckpt_epochs": 1,
    "dataset_path": "./data_en",
    "class_index": index_en,
    "pretrained_ckpt": "./mobilenetV2-200_1067.ckpt" # mobilenetV2-200_1067.ckpt 
})

在这里插入图片描述

在这里插入图片描述

数据预处理操作

利用ImageFolderDataset方法读取垃圾分类数据集,并整体对数据集进行处理。

读取数据集时指定训练集和测试集,首先对整个数据集进行归一化,修改图像频道等预处理操作。然后对训练集的数据依次进行RandomCropDecodeResize、RandomHorizontalFlip、RandomColorAdjust、shuffle操作,以增加训练数据的丰富度;对测试集进行Decode、Resize、CenterCrop等预处理操作;最后返回处理后的数据集。

def create_dataset(dataset_path, config, training=True, buffer_size=1000):
    """
    create a train or eval dataset

    Args:
        dataset_path(string): the path of dataset.
        config(struct): the config of train and eval in diffirent platform.

    Returns:
        train_dataset, val_dataset
    """
    data_path = os.path.join(dataset_path, 'train' if training else 'test')
    ds = de.ImageFolderDataset(data_path, num_parallel_workers=4, class_indexing=config.class_index)
    resize_height = config.image_height
    resize_width = config.image_width
    
    normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
    change_swap_op = C.HWC2CHW()
    type_cast_op = C2.TypeCast(mstype.int32)

    if training:
        crop_decode_resize = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
        horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
        color_adjust = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
    
        train_trans = [crop_decode_resize, horizontal_flip_op, color_adjust, normalize_op, change_swap_op]
        train_ds = ds.map(input_columns="image", operations=train_trans, num_parallel_workers=4)
        train_ds = train_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        
        train_ds = train_ds.shuffle(buffer_size=buffer_size)
        ds = train_ds.batch(config.batch_size, drop_remainder=True)
    else:
        decode_op = C.Decode()
        resize_op = C.Resize((int(resize_width/0.875), int(resize_width/0.875)))
        center_crop = C.CenterCrop(resize_width)
        
        eval_trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op]
        eval_ds = ds.map(input_columns="image", operations=eval_trans, num_parallel_workers=4)
        eval_ds = eval_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        ds = eval_ds.batch(config.eval_batch_size, drop_remainder=True)

    return ds
def create_dataset(dataset_path, config, training=True, buffer_size=1000):
    """
    create a train or eval dataset
​
    Args:
        dataset_path(string): the path of dataset.
        config(struct): the config of train and eval in diffirent platform.Returns:
        train_dataset, val_dataset
    """
    data_path = os.path.join(dataset_path, 'train' if training else 'test')
    ds = de.ImageFolderDataset(data_path, num_parallel_workers=4, class_indexing=config.class_index)
    resize_height = config.image_height
    resize_width = config.image_width
    
    normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
    change_swap_op = C.HWC2CHW()
    type_cast_op = C2.TypeCast(mstype.int32)if training:
        crop_decode_resize = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
        horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
        color_adjust = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
    
        train_trans = [crop_decode_resize, horizontal_flip_op, color_adjust, normalize_op, change_swap_op]
        train_ds = ds.map(input_columns="image", operations=train_trans, num_parallel_workers=4)
        train_ds = train_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        
        train_ds = train_ds.shuffle(buffer_size=buffer_size)
        ds = train_ds.batch(config.batch_size, drop_remainder=True)
    else:
        decode_op = C.Decode()
        resize_op = C.Resize((int(resize_width/0.875), int(resize_width/0.875)))
        center_crop = C.CenterCrop(resize_width)
        
        eval_trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op]
        eval_ds = ds.map(input_columns="image", operations=eval_trans, num_parallel_workers=4)
        eval_ds = eval_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        ds = eval_ds.batch(config.eval_batch_size, drop_remainder=True)return ds

展示部分处理后的数据:

ds = create_dataset(dataset_path=config.dataset_path, config=config, training=False)
print(ds.get_dataset_size())
data = ds.create_dict_iterator(output_numpy=True)._get_next()
images = data['image']
labels = data['label']

for i in range(1, 5):
    plt.subplot(2, 2, i)
    plt.imshow(np.transpose(images[i], (1,2,0)))
    plt.title('label: %s' % class_en[labels[i]])
    plt.xticks([])
plt.show()
ds = create_dataset(dataset_path=config.dataset_path, config=config, training=False)
print(ds.get_dataset_size())
data = ds.create_dict_iterator(output_numpy=True)._get_next()
images = data['image']
labels = data['label']for i in range(1, 5):
    plt.subplot(2, 2, i)
    plt.imshow(np.transpose(images[i], (1,2,0)))
    plt.title('label: %s' % class_en[labels[i]])
    plt.xticks([])
plt.show()

Clipping input data to the valid range for imshow with RGB data ([0…1] for floats or [0…255] for integers). Got range [-1.9831933…2.64].
Clipping input data to the valid range for imshow with RGB data ([0…1] for floats or [0…255] for integers). Got range [-2.117904…2.4285715].
Clipping input data to the valid range for imshow with RGB data ([0…1] for floats or [0…255] for integers). Got range [-2.0494049…2.273987].
Clipping input data to the valid range for imshow with RGB data ([0…1] for floats or [0…255] for integers). Got range [-1.9809059…2.64].
32

5、MobileNetV2模型搭建
使用MindSpore定义MobileNetV2网络的各模块时需要继承mindspore.nn.Cell。Cell是所有神经网络(Conv2d等)的基类。

神经网络的各层需要预先在__init__方法中定义,然后通过定义construct方法来完成神经网络的前向构造。原始模型激活函数为ReLU6,池化模块采用是全局平均池化层。

__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']

def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

class GlobalAvgPooling(nn.Cell):
    """
    Global avg pooling definition.

    Args:

    Returns:
        Tensor, output tensor.

    Examples:
        >>> GlobalAvgPooling()
    """

    def __init__(self):
        super(GlobalAvgPooling, self).__init__()

    def construct(self, x):
        x = P.mean(x, (2, 3))
        return x

class ConvBNReLU(nn.Cell):
    """
    Convolution/Depthwise fused with Batchnorm and ReLU block definition.

    Args:
        in_planes (int): Input channel.
        out_planes (int): Output channel.
        kernel_size (int): Input kernel size.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.

    Returns:
        Tensor, output tensor.

    Examples:
        >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
    """

    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        super(ConvBNReLU, self).__init__()
        padding = (kernel_size - 1) // 2
        in_channels = in_planes
        out_channels = out_planes
        if groups == 1:
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad', padding=padding)
        else:
            out_channels = in_planes
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad',
                             padding=padding, group=in_channels)

        layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

class InvertedResidual(nn.Cell):
    """
    Mobilenetv2 residual block definition.

    Args:
        inp (int): Input channel.
        oup (int): Output channel.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        expand_ratio (int): expand ration of input channel

    Returns:
        Tensor, output tensor.

    Examples:
        >>> ResidualBlock(3, 256, 1, 1)
    """

    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            ConvBNReLU(hidden_dim, hidden_dim,
                       stride=stride, groups=hidden_dim),
            nn.Conv2d(hidden_dim, oup, kernel_size=1,
                      stride=1, has_bias=False),
            nn.BatchNorm2d(oup),
        ])
        self.conv = nn.SequentialCell(layers)
        self.cast = P.Cast()

    def construct(self, x):
        identity = x
        x = self.conv(x)
        if self.use_res_connect:
            return P.add(identity, x)
        return x

class MobileNetV2Backbone(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, width_mult=1., inverted_residual_setting=None, round_nearest=8,
                 input_channel=32, last_channel=1280):
        super(MobileNetV2Backbone, self).__init__()
        block = InvertedResidual
        # setting of inverted residual blocks
        self.cfgs = inverted_residual_setting
        if inverted_residual_setting is None:
            self.cfgs = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
        self.features = nn.SequentialCell(features)
        self._initialize_weights()

    def construct(self, x):
        x = self.features(x)
        return x

    def _initialize_weights(self):
        """
        Initialize weights.

        Args:

        Returns:
            None.

        Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.set_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
                                                          m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
            elif isinstance(m, nn.BatchNorm2d):
                m.gamma.set_data(
                    Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
                m.beta.set_data(
                    Tensor(np.zeros(m.beta.data.shape, dtype="float32")))

    @property
    def get_features(self):
        return self.features

class MobileNetV2Head(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): Number of classes. Default is 1000.
        has_dropout (bool): Is dropout used. Default is false
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False, activation="None"):
        super(MobileNetV2Head, self).__init__()
        # mobilenet head
        head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else
                [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])
        self.head = nn.SequentialCell(head)
        self.need_activation = True
        if activation == "Sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "Softmax":
            self.activation = nn.Softmax()
        else:
            self.need_activation = False
        self._initialize_weights()

    def construct(self, x):
        x = self.head(x)
        if self.need_activation:
            x = self.activation(x)
        return x

    def _initialize_weights(self):
        """
        Initialize weights.

        Args:

        Returns:
            None.

        Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Dense):
                m.weight.set_data(Tensor(np.random.normal(
                    0, 0.01, m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
    @property
    def get_head(self):
        return self.head

class MobileNetV2(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(backbone, head)
    """

    def __init__(self, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \
        round_nearest=8, input_channel=32, last_channel=1280):
        super(MobileNetV2, self).__init__()
        self.backbone = MobileNetV2Backbone(width_mult=width_mult, \
            inverted_residual_setting=inverted_residual_setting, \
            round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features
        self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \
            has_dropout=has_dropout).get_head

    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x

class MobileNetV2Combine(nn.Cell):
    """
    MobileNetV2Combine architecture.

    Args:
        backbone (Cell): the features extract layers.
        head (Cell):  the fully connected layers.
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, backbone, head):
        super(MobileNetV2Combine, self).__init__(auto_prefix=False)
        self.backbone = backbone
        self.head = head

    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x

def mobilenet_v2(backbone, head):
    return MobileNetV2Combine(backbone, head)
__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']
​
def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
​
class GlobalAvgPooling(nn.Cell):
    """
    Global avg pooling definition.Args:Returns:
        Tensor, output tensor.Examples:
        >>> GlobalAvgPooling()
    """
​
    def __init__(self):
        super(GlobalAvgPooling, self).__init__()
​
    def construct(self, x):
        x = P.mean(x, (2, 3))
        return x
​
class ConvBNReLU(nn.Cell):
    """
    Convolution/Depthwise fused with Batchnorm and ReLU block definition.Args:
        in_planes (int): Input channel.
        out_planes (int): Output channel.
        kernel_size (int): Input kernel size.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.Returns:
        Tensor, output tensor.Examples:
        >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
    """
​
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        super(ConvBNReLU, self).__init__()
        padding = (kernel_size - 1) // 2
        in_channels = in_planes
        out_channels = out_planes
        if groups == 1:
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad', padding=padding)
        else:
            out_channels = in_planes
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad',
                             padding=padding, group=in_channels)
​
        layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
        self.features = nn.SequentialCell(layers)
​
    def construct(self, x):
        output = self.features(x)
        return output
​
class InvertedResidual(nn.Cell):
    """
    Mobilenetv2 residual block definition.Args:
        inp (int): Input channel.
        oup (int): Output channel.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        expand_ratio (int): expand ration of input channel
​
    Returns:
        Tensor, output tensor.Examples:
        >>> ResidualBlock(3, 256, 1, 1)
    """
​
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        assert stride in [1, 2]
​
        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = stride == 1 and inp == oup
​
        layers = []
        if expand_ratio != 1:
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            ConvBNReLU(hidden_dim, hidden_dim,
                       stride=stride, groups=hidden_dim),
            nn.Conv2d(hidden_dim, oup, kernel_size=1,
                      stride=1, has_bias=False),
            nn.BatchNorm2d(oup),
        ])
        self.conv = nn.SequentialCell(layers)
        self.cast = P.Cast()
​
    def construct(self, x):
        identity = x
        x = self.conv(x)
        if self.use_res_connect:
            return P.add(identity, x)
        return x
​
class MobileNetV2Backbone(nn.Cell):
    """
    MobileNetV2 architecture.Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.Examples:
        >>> MobileNetV2(num_classes=1000)
    """
​
    def __init__(self, width_mult=1., inverted_residual_setting=None, round_nearest=8,
                 input_channel=32, last_channel=1280):
        super(MobileNetV2Backbone, self).__init__()
        block = InvertedResidual
        # setting of inverted residual blocks
        self.cfgs = inverted_residual_setting
        if inverted_residual_setting is None:
            self.cfgs = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]
​
        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
        self.features = nn.SequentialCell(features)
        self._initialize_weights()
​
    def construct(self, x):
        x = self.features(x)
        return x
​
    def _initialize_weights(self):
        """
        Initialize weights.Args:Returns:
            None.Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.set_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
                                                          m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
            elif isinstance(m, nn.BatchNorm2d):
                m.gamma.set_data(
                    Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
                m.beta.set_data(
                    Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
​
    @property
    def get_features(self):
        return self.features
​
class MobileNetV2Head(nn.Cell):
    """
    MobileNetV2 architecture.Args:
        class_num (int): Number of classes. Default is 1000.
        has_dropout (bool): Is dropout used. Default is false
    Returns:
        Tensor, output tensor.Examples:
        >>> MobileNetV2(num_classes=1000)
    """
​
    def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False, activation="None"):
        super(MobileNetV2Head, self).__init__()
        # mobilenet head
        head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else
                [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])
        self.head = nn.SequentialCell(head)
        self.need_activation = True
        if activation == "Sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "Softmax":
            self.activation = nn.Softmax()
        else:
            self.need_activation = False
        self._initialize_weights()
​
    def construct(self, x):
        x = self.head(x)
        if self.need_activation:
            x = self.activation(x)
        return x
​
    def _initialize_weights(self):
        """
        Initialize weights.Args:Returns:
            None.Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Dense):
                m.weight.set_data(Tensor(np.random.normal(
                    0, 0.01, m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
    @property
    def get_head(self):
        return self.head
​
class MobileNetV2(nn.Cell):
    """
    MobileNetV2 architecture.Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.Examples:
        >>> MobileNetV2(backbone, head)
    """
​
    def __init__(self, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \
        round_nearest=8, input_channel=32, last_channel=1280):
        super(MobileNetV2, self).__init__()
        self.backbone = MobileNetV2Backbone(width_mult=width_mult, \
            inverted_residual_setting=inverted_residual_setting, \
            round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features
        self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \
            has_dropout=has_dropout).get_head
​
    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x
​
class MobileNetV2Combine(nn.Cell):
    """
    MobileNetV2Combine architecture.Args:
        backbone (Cell): the features extract layers.
        head (Cell):  the fully connected layers.
    Returns:
        Tensor, output tensor.Examples:
        >>> MobileNetV2(num_classes=1000)
    """
​
    def __init__(self, backbone, head):
        super(MobileNetV2Combine, self).__init__(auto_prefix=False)
        self.backbone = backbone
        self.head = head
​
    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x
​
def mobilenet_v2(backbone, head):
    return MobileNetV2Combine(backbone, head)

6、MobileNetV2模型的训练与测试

训练策略
一般情况下,模型训练时采用静态学习率,如0.01。随着训练步数的增加,模型逐渐趋于收敛,对权重参数的更新幅度应该逐渐降低,以减小模型训练后期的抖动。所以,模型训练时可以采用动态下降的学习率,常见的学习率下降策略有:

polynomial decay/square decay;
cosine decay;
exponential decay;
stage decay.

这里使用cosine decay下降策略:

def cosine_decay(total_steps, lr_init=0.0, lr_end=0.0, lr_max=0.1, warmup_steps=0):
    """
    Applies cosine decay to generate learning rate array.

    Args:
       total_steps(int): all steps in training.
       lr_init(float): init learning rate.
       lr_end(float): end learning rate
       lr_max(float): max learning rate.
       warmup_steps(int): all steps in warmup epochs.

    Returns:
       list, learning rate array.
    """
    lr_init, lr_end, lr_max = float(lr_init), float(lr_end), float(lr_max)
    decay_steps = total_steps - warmup_steps
    lr_all_steps = []
    inc_per_step = (lr_max - lr_init) / warmup_steps if warmup_steps else 0
    for i in range(total_steps):
        if i < warmup_steps:
            lr = lr_init + inc_per_step * (i + 1)
        else:
            cosine_decay = 0.5 * (1 + math.cos(math.pi * (i - warmup_steps) / decay_steps))
            lr = (lr_max - lr_end) * cosine_decay + lr_end
        lr_all_steps.append(lr)

    return lr_all_steps
def cosine_decay(total_steps, lr_init=0.0, lr_end=0.0, lr_max=0.1, warmup_steps=0):
    """
    Applies cosine decay to generate learning rate array.Args:
       total_steps(int): all steps in training.
       lr_init(float): init learning rate.
       lr_end(float): end learning rate
       lr_max(float): max learning rate.
       warmup_steps(int): all steps in warmup epochs.Returns:
       list, learning rate array.
    """
    lr_init, lr_end, lr_max = float(lr_init), float(lr_end), float(lr_max)
    decay_steps = total_steps - warmup_steps
    lr_all_steps = []
    inc_per_step = (lr_max - lr_init) / warmup_steps if warmup_steps else 0
    for i in range(total_steps):
        if i < warmup_steps:
            lr = lr_init + inc_per_step * (i + 1)
        else:
            cosine_decay = 0.5 * (1 + math.cos(math.pi * (i - warmup_steps) / decay_steps))
            lr = (lr_max - lr_end) * cosine_decay + lr_end
        lr_all_steps.append(lr)return lr_all_steps

在模型训练过程中,可以添加检查点(Checkpoint)用于保存模型的参数,以便进行推理及中断后再训练使用。使用场景如下:

  • 训练后推理场景
    模型训练完毕后保存模型的参数,用于推理或预测操作。
    训练过程中,通过实时验证精度,把精度最高的模型参数保存下来,用于预测操作。
  • 再训练场景
    进行长时间训练任务时,保存训练过程中的Checkpoint文件,防止任务异常退出后从初始状态开始训练。
    Fine-tuning(微调)场景,即训练一个模型并保存参数,基于该模型,面向第二个类似任务进行模型训练。
    这里加载ImageNet数据上预训练的MobileNetv2进行Fine-tuning,只训练最后修改的FC层,并在训练过程中保存Checkpoint。
def switch_precision(net, data_type):
    if ms.get_context('device_target') == "Ascend":
        net.to_float(data_type)
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Dense):
                cell.to_float(ms.float32)
def switch_precision(net, data_type):
    if ms.get_context('device_target') == "Ascend":
        net.to_float(data_type)
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Dense):
                cell.to_float(ms.float32)

在这里插入图片描述

模型训练与测试

在进行正式的训练之前,定义训练函数,读取数据并对模型进行实例化,定义优化器和损失函数。

首先简单介绍损失函数及优化器的概念:

  • 损失函数:又叫目标函数,用于衡量预测值与实际值差异的程度。深度学习通过不停地迭代来缩小损失函数的值。定义一个好的损失函数,可以有效提高模型的性能。

  • 优化器:用于最小化损失函数,从而在训练过程中改进模型。

定义了损失函数后,可以得到损失函数关于权重的梯度。梯度用于指示优化器优化权重的方向,以提高模型性能。

在训练MobileNetV2之前对MobileNetV2Backbone层的参数进行了固定,使其在训练过程中对该模块的权重参数不进行更新;只对MobileNetV2Head模块的参数进行更新。

MindSpore支持的损失函数有SoftmaxCrossEntropyWithLogits、L1Loss、MSELoss等。这里使用SoftmaxCrossEntropyWithLogits损失函数。

训练测试过程中会打印loss值,loss值会波动,但总体来说loss值会逐步减小,精度逐步提高。每个人运行的loss值有一定随机性,不一定完全相同。

每打印一个epoch后模型都会在测试集上的计算测试精度,从打印的精度值分析MobileNetV2模型的预测能力在不断提升。

from mindspore.amp import FixedLossScaleManager
import time
LOSS_SCALE = 1024

train_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
eval_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
step_size = train_dataset.get_dataset_size()
    
backbone = MobileNetV2Backbone() #last_channel=config.backbone_out_channels
# Freeze parameters of backbone. You can comment these two lines.
for param in backbone.get_parameters():
    param.requires_grad = False
# load parameters from pretrained model
load_checkpoint(config.pretrained_ckpt, backbone)

head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
network = mobilenet_v2(backbone, head)

# define loss, optimizer, and model
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
loss_scale = FixedLossScaleManager(LOSS_SCALE, drop_overflow_update=False)
lrs = cosine_decay(config.epochs * step_size, lr_max=config.lr_max)
opt = nn.Momentum(network.trainable_params(), lrs, config.momentum, config.weight_decay, loss_scale=LOSS_SCALE)

# 定义用于训练的train_loop函数。
def train_loop(model, dataset, loss_fn, optimizer):
    # 定义正向计算函数
    def forward_fn(data, label):
        logits = model(data)
        loss = loss_fn(logits, label)
        return loss

    # 定义微分函数,使用mindspore.value_and_grad获得微分函数grad_fn,输出loss和梯度。
    # 由于是对模型参数求导,grad_position 配置为None,传入可训练参数。
    grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters)

    # 定义 one-step training函数
    def train_step(data, label):
        loss, grads = grad_fn(data, label)
        optimizer(grads)
        return loss

    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 10 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

# 定义用于测试的test_loop函数。
def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

print("============== Starting Training ==============")
# 由于时间问题,训练过程只进行了2个epoch ,可以根据需求调整。
epoch_begin_time = time.time()
epochs = 2
for t in range(epochs):
    begin_time = time.time()
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(network, train_dataset, loss, opt)
    ms.save_checkpoint(network, "save_mobilenetV2_model.ckpt")
    end_time = time.time()
    times = end_time - begin_time
    print(f"per epoch time: {times}s")
    test_loop(network, eval_dataset, loss)
epoch_end_time = time.time()
times = epoch_end_time - epoch_begin_time
print(f"total time:  {times}s")
print("============== Training Success ==============")
from mindspore.amp import FixedLossScaleManager
import time
LOSS_SCALE = 1024
​
train_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
eval_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
step_size = train_dataset.get_dataset_size()
    
backbone = MobileNetV2Backbone() #last_channel=config.backbone_out_channels
# Freeze parameters of backbone. You can comment these two lines.
for param in backbone.get_parameters():
    param.requires_grad = False
# load parameters from pretrained model
load_checkpoint(config.pretrained_ckpt, backbone)
​
head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
network = mobilenet_v2(backbone, head)
​
# define loss, optimizer, and model
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
loss_scale = FixedLossScaleManager(LOSS_SCALE, drop_overflow_update=False)
lrs = cosine_decay(config.epochs * step_size, lr_max=config.lr_max)
opt = nn.Momentum(network.trainable_params(), lrs, config.momentum, config.weight_decay, loss_scale=LOSS_SCALE)
​
# 定义用于训练的train_loop函数。
def train_loop(model, dataset, loss_fn, optimizer):
    # 定义正向计算函数
    def forward_fn(data, label):
        logits = model(data)
        loss = loss_fn(logits, label)
        return loss
​
    # 定义微分函数,使用mindspore.value_and_grad获得微分函数grad_fn,输出loss和梯度。
    # 由于是对模型参数求导,grad_position 配置为None,传入可训练参数。
    grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters)
​
    # 定义 one-step training函数
    def train_step(data, label):
        loss, grads = grad_fn(data, label)
        optimizer(grads)
        return loss
​
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)if batch % 10 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")
​
# 定义用于测试的test_loop函数。
def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")print("============== Starting Training ==============")
# 由于时间问题,训练过程只进行了2个epoch ,可以根据需求调整。
epoch_begin_time = time.time()
epochs = 2
for t in range(epochs):
    begin_time = time.time()
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(network, train_dataset, loss, opt)
    ms.save_checkpoint(network, "save_mobilenetV2_model.ckpt")
    end_time = time.time()
    times = end_time - begin_time
    print(f"per epoch time: {times}s")
    test_loop(network, eval_dataset, loss)
epoch_end_time = time.time()
times = epoch_end_time - epoch_begin_time
print(f"total time:  {times}s")
print("============== Training Success ==============")
============== Starting Training ==============

Epoch 1

[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:11:59.680.056 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:11:59.680.141 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:11:59.680.195 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
loss: 3.241972 [ 0/162]
loss: 3.257221 [ 10/162]
loss: 3.279036 [ 20/162]
loss: 3.319016 [ 30/162]
loss: 3.203032 [ 40/162]
loss: 3.281466 [ 50/162]
loss: 3.279725 [ 60/162]
loss: 3.229515 [ 70/162]
loss: 3.267290 [ 80/162]
loss: 3.188127 [ 90/162]
loss: 3.212995 [100/162]
loss: 3.241497 [110/162]
loss: 3.209007 [120/162]
loss: 3.172501 [130/162]
loss: 3.197280 [140/162]
loss: 3.272911 [150/162]
loss: 3.216317 [160/162]
per epoch time: 76.58693552017212s
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:13:15.037.060 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/3136751602.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:13:15.037.167 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/3136751602.py]
Test:
Accuracy: 8.0%, Avg loss: 3.194478

Epoch 2

[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:14:30.208.773 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:14:30.208.853 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:14:30.208.907 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/1438112663.py]
loss: 3.188095 [ 0/162]
loss: 3.165776 [ 10/162]
loss: 3.191228 [ 20/162]
loss: 3.138081 [ 30/162]
loss: 3.074074 [ 40/162]
loss: 3.163727 [ 50/162]
loss: 3.165467 [ 60/162]
loss: 3.173247 [ 70/162]
loss: 3.159379 [ 80/162]
loss: 3.143544 [ 90/162]
loss: 3.200886 [100/162]
loss: 3.201387 [110/162]
loss: 3.165534 [120/162]
loss: 3.171612 [130/162]
loss: 3.203765 [140/162]
loss: 3.166876 [150/162]
loss: 3.125233 [160/162]
per epoch time: 76.00073027610779s
Test:
Accuracy: 17.4%, Avg loss: 3.111141

total time: 295.01550674438477s
============== Training Success ==============

7、模型推理

加载模型Checkpoint进行推理,使用load_checkpoint接口加载数据时,需要把数据传入给原始网络,而不能传递给带有优化器和损失函数的训练网络。

CKPT="save_mobilenetV2_model.ckpt"
def image_process(image):
    """Precess one image per time.
    
    Args:
        image: shape (H, W, C)
    """
    mean=[0.485*255, 0.456*255, 0.406*255]
    std=[0.229*255, 0.224*255, 0.225*255]
    image = (np.array(image) - mean) / std
    image = image.transpose((2,0,1))
    img_tensor = Tensor(np.array([image], np.float32))
    return img_tensor
​
def infer_one(network, image_path):
    image = Image.open(image_path).resize((config.image_height, config.image_width))
    logits = network(image_process(image))
    pred = np.argmax(logits.asnumpy(), axis=1)[0]
    print(image_path, class_en[pred])
​
def infer():
    backbone = MobileNetV2Backbone(last_channel=config.backbone_out_channels)
    head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
    network = mobilenet_v2(backbone, head)
    load_checkpoint(CKPT, network)
    for i in range(91, 100):
        infer_one(network, f'data_en/test/Cardboard/000{i}.jpg')
infer()
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:16:53.811.718 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/3136751602.py]
[ERROR] CORE(185595,ffff82d60930,python):2024-06-07-01:16:53.811.810 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_185595/3136751602.py]
data_en/test/Cardboard/00091.jpg Lighter
data_en/test/Cardboard/00092.jpg Broom
data_en/test/Cardboard/00093.jpg Basketball
data_en/test/Cardboard/00094.jpg Basketball
data_en/test/Cardboard/00095.jpg Basketball
data_en/test/Cardboard/00096.jpg Glassware
data_en/test/Cardboard/00097.jpg Lighter
data_en/test/Cardboard/00098.jpg Basketball
data_en/test/Cardboard/00099.jpg Basketball
8、导出AIR/GEIR/ONNX模型文件
导出AIR模型文件,用于后续Atlas 200 DK上的模型转换与推理。当前仅支持MindSpore+Ascend环境。

backbone = MobileNetV2Backbone(last_channel=config.backbone_out_channels)
head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
network = mobilenet_v2(backbone, head)
load_checkpoint(CKPT, network)
​
input = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32)
# export(network, Tensor(input), file_name='mobilenetv2.air', file_format='AIR')
# export(network, Tensor(input), file_name='mobilenetv2.pb', file_format='GEIR')
export(network, Tensor(input), file_name='mobilenetv2.onnx', file_format='ONNX')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1969622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Bugku] web-CTF-alert

1.开启环境 2.根据题目得知flag就在这里&#xff0c;F12查看一下源码 3.发现编码&#xff0c;使用Unicode解码

Java数组反转,添加,排序,查找

目录 1.数组反转 2.数组添加 3.排序的介绍 冒泡排序法 4.查找 1.数组反转 定义一个数组然后将它的第一个元素与最后一个元素调换位置。 i为数组的长度减一&#xff0c;也就是最后一个元素的下标&#xff0c;j为0&#xff0c;也就是数组中第一个元素的下标&#xff0c;然后…

MATLAB(13)蚁狮群优化BP模型数据读取ALO_BP

一、前言 为了使用蚁狮优化算法&#xff08;Ant Lion Optimizer, ALO&#xff09;来优化BP&#xff08;反向传播&#xff09;神经网络模型中的参数&#xff08;如学习率、权重初始化等&#xff09;&#xff0c;我们首先需要定义蚁狮优化算法来搜索最优参数&#xff0c;然后使用…

【全网最全最详细】MYSQL 面试题大全(下)

目录 五十一、MYSQL主从复制的过程? 五十二、介绍一下InnbDB的数据页,和B+树的关系是什么? 五十三、MYSQL的驱动表是什么?如何选驱动表? 五十四、MYSQL的hash join是什么? 五十五、MYSQL执行大事务会存在什么问题? 五十六、什么是buffer pool? 五十七、buffer p…

ChinaJoy BTOB完美收官,Flat Ads高光时刻全回顾

7 月 26 日至 7 月 29 日, 2024 年第二十一届 ChinaJoy 在上海新国际博览中心隆重举行,其中 ChinaJoy BTOB 商务洽谈馆已于 7 月 28 日正式收官。ChinaJoy 作为全球数字娱乐领域兼具知名度与影响力的年度盛会,汇聚了来自世界各地的游戏和科技企业,展示其最新的科技成果和创新产…

AIGC第“五小龙”有苗条了?

纵观人类发展史&#xff0c;每一次世界性变革发生的背后无一不是靠生产力、生产工具支撑、驱动的。并且随着生产工具愈发先进话、科技化&#xff0c;相邻两场革命的时间间隔也在不断缩减&#xff0c;带来的社会、经济、政治等多方面的效应却是以超十倍、百倍、千倍……的增速在…

帮助网站提升用户参与度的5个WordPress插件

仅靠编写精彩的内容、设计精美的图像和创建简化的客户旅程不足以提高网站参与度。您需要让用户在首次访问后继续与您的网站互动并成为回访者&#xff0c;才能真正吸引您所追求的兴趣。 幸运的是&#xff0c;对于 WordPress 用户来说&#xff0c;有数百种工具可用于提高用户参与…

事件循环-宏任务与微任务

事件循环(eventloop) 同步和异步 JS是单线程的&#xff0c;也就是说&#xff0c; 同一时间只能做一件事&#xff0c;所有任务需要排队&#xff0c;前一个任务结束之后才会执行下一个任务。 作为浏览器脚本语言&#xff0c;JavaScript的主要用途是和用户互动以及操作DOM&#…

jQuery入门(一)jQuery基本语法

一、JQuery介绍 - jQuery 是一个 JavaScript 库。 - 所谓的库&#xff0c;就是一个 JS 文件&#xff0c;里面封装了很多预定义的函数&#xff0c;比如获取元素&#xff0c;执行隐藏、移动等&#xff0c;目的就 是在使用时直接调用&#xff0c;不 需要再重复定义&#xff0c;这…

【linux】【操作系统】内核之asm.s源码阅读

asm.s是Linux内核的一部分&#xff0c;主要负责处理各种类型的硬件异常和中断。 _divide_error 处理除法错误中断。当CPU执行除法指令时遇到除数为零的情况&#xff0c;会触发这个中断。此函数首先保存当前的寄存器状态&#xff0c;然后调用_do_divide_error函数来处理具体的错…

JavaEE 从入门到精通(二) ~SpringMVC 接收请求和设置响应

晚上好&#xff0c;愿这深深的夜色给你带来安宁&#xff0c;让温馨的夜晚抚平你一天的疲惫&#xff0c;美好的梦想在这个寂静的夜晚悄悄成长。 目录 前言 一、获取请求数据 1. 简单参数 1.1 请求行获取参数 a. 与查询参数的名称相同&#xff0c;底层会自动映射到形参中。 …

MySQL笔记(二):创建表

一、创建数据库(create) 按行运行&#xff0c;运行后右键rootlocalhost&#xff0c;刷新可以看到变换。 二、查询数据库&#xff08;show) 三、备份恢复数据库&#xff08;备份到另一个DBMS中去&#xff09; 备份数据库&#xff08;在DOS中执行&#xff09;命令行 mysqldu…

25款拥有炫酷动画效果的创意404错误页面源代码

25款拥有炫酷动画效果的创意404错误页面源代码&#xff0c;一系列具有炫酷动画效果的创意404错误页面&#xff0c;开发者可以利用各种前端技术和工具来实现。 源码免费下载&#xff1a;https://download.csdn.net/download/m0_66047725/89602634 更多资源下载&#xff1a;关注…

【每日力扣中医养生】力扣55. 跳跃游戏

55. 跳跃游戏 文章目录 【每日力扣】力扣55. 跳跃游戏题目描述输入输出示例示例 1示例 2 思路分析代码实现复杂度分析总结 【每日力扣】力扣55. 跳跃游戏 博主写这篇文章的时候已经凌晨1点30分啦。故想分享一下中医的子午觉这一养生技巧&#xff0c;就算真的要熬夜&#xff0…

第一阶段面试问题(前半部分)

1. 进程和线程的概念、区别以及什么时候用线程、什么时候用进程&#xff1f; &#xff08;1&#xff09;线程 线程是CPU任务调度的最小单元、是一个轻量级的进程 &#xff08;2&#xff09;进程 进程是操作系统资源分配的最小单元 进程是一个程序动态执行的过程&#xff0c;包…

Scrapy 爬取旅游景点相关数据(八)重用代理

本期学习&#xff1a;代理的使用与代理池的更新 1 代理IP提取 在Scrapy 爬取旅游景点相关数据&#xff08;六&#xff09;已经讲到了代理的使用&#xff0c;可以先学习这一期再来看本期内容&#xff0c; 第一步是代理IP提取&#xff0c;下面代码就是在中间件初始化的时候去更…

数据库之mysql初体验

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…

Nsight-Compute Global Load相关Metric测试

Nsight-Compute Global Load相关Metric测试 1.参考链接2.生成测试用例3.编译4.Profiling并将结果导出到csv文件5.截图 本文使用ptx指令直接从global memory获取数据,了解相关metrics及其计算过程 1.参考链接 PTX Cache OperatorsPTX LD指令Kernel Profiling Guide Caches 2.…

探秘LED显示屏背后的秘密:数字信号与数字电路的奇妙世界

走进繁华的都市&#xff0c;无论是闪烁的霓虹灯下&#xff0c;还是宏大的体育场馆内&#xff0c;LED显示屏以其绚丽的色彩和清晰的画面吸引着我们的目光。但你是否好奇&#xff0c;这些令人惊叹的显示效果背后&#xff0c;隐藏着怎样的科技奥秘&#xff1f;今天&#xff0c;就让…

数据结构初阶-复杂度

复杂度 &#x1f388;1.例题一&#x1f388;2.例题二 &#x1f388;1.例题一 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个&#xff0c;请编写代码找出那个缺失的整数。 ✅思路1&#xff1a;先冒泡排序&#xff0c;再遍历&#xff0c;当前值1&#xff0c;不等于下一…