1.来源
https://github.com/InternLM/Tutorial/blob/camp3/docs/L1/Demo/task.md
2.过程
- 在
/root/share/pre_envs
中配置好了预置环境icamp3_demo
conda activate /root/share/pre_envs/icamp3_demo
- 创建一个目录,用于存放我们的代码。并创建一个
cli_demo.py
mkdir -p /root/demo
touch /root/demo/cli_demo.py
- 然后,我们将下面的代码复制到 cli_demo.py 中。【/root/share/new_models下存放部署代码】
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
启动py文件后:
-
进行代理,使其在本地能够进行访问:
-
浏览本地服务器:
推理过程资源消耗如图所示: