GEE数据:Sentinel-2数据更新新增两个云和雪波段(MSK_CLDPRB和MSK_SNWPRB)

news2025/1/18 12:02:06

目录

简介

数据时间

数据提供者

Collection Snippet

波段名称

Class Table: SCL

影像属性

代码

结果 


简介

2022年1月25日之后,PROCESSING_BASELINE为“04.00”或以上的Sentinel-2场景的DN(值)范围移动了1000。HARMONIZED集合将新场景中的数据转移到与旧场景相同的范围内。 Sentinel-2是一项宽范围、高分辨率、多光谱成像任务,支持Copernicus土地监测研究,包括监测植被、土壤和水覆盖,以及观察内陆水道和沿海地区。 Sentinel-2 L2数据从scihub下载。它们是通过运行sen 2cor来计算的。警告:ESA没有为所有L1资产生成L2数据,并且早期的L2覆盖范围并非全球性。 这些资产包含12个UINT 16光谱带,代表按10000缩放的SR(与L1数据不同,没有B10)。还有几个L2特定的乐队(详细信息请参阅乐队列表)。有关详细信息,请参阅Sentinel-2用户手册。此外,还存在三个QA频段,其中一个(QA 60)是具有云屏蔽信息的位屏蔽频段。欲了解更多详细信息,请参阅有关如何计算云面罩的完整解释。 Sentinel-2 L2资产的EE资产ID具有以下格式:COPERNICUS/S2_SR/20151128T002653_20151128T102149_T56MNN。这里,第一个数字部分表示传感日期和时间,第二个数字部分表示产品生成日期和时间,最后的6个字符串是指示其UTM网格参考的唯一颗粒标识符(请参阅MGRS)。

数据时间

2017-03-28T00:00:00 -

数据提供者

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED"

波段名称
NameDescriptionMinMaxResolutionUnitsWavelengthScale
B1Aerosols60 meters443.9nm (S2A) / 442.3nm (S2B)0.0001
B2Blue10 meters496.6nm (S2A) / 492.1nm (S2B)0.0001
B3Green10 meters560nm (S2A) / 559nm (S2B)0.0001
B4Red10 meters664.5nm (S2A) / 665nm (S2B)0.0001
B5Red Edge 120 meters703.9nm (S2A) / 703.8nm (S2B)0.0001
B6Red Edge 220 meters740.2nm (S2A) / 739.1nm (S2B)0.0001
B7Red Edge 320 meters782.5nm (S2A) / 779.7nm (S2B)0.0001
B8NIR10 meters835.1nm (S2A) / 833nm (S2B)0.0001
B8ARed Edge 420 meters864.8nm (S2A) / 864nm (S2B)0.0001
B9Water vapor60 meters945nm (S2A) / 943.2nm (S2B)0.0001
B11SWIR 120 meters1613.7nm (S2A) / 1610.4nm (S2B)0.0001
B12SWIR 220 meters2202.4nm (S2A) / 2185.7nm (S2B)0.0001
AOTAerosol Optical Thickness10 meters0.001
WVPWater Vapor Pressure. The height the water would occupy if the vapor were condensed into liquid and spread evenly across the column.10 meterscm0.001
SCLScene Classification Map (The "No Data" value of 0 is masked out)11120 meters0
TCI_RTrue Color Image, Red channel10 meters0
TCI_GTrue Color Image, Green channel10 meters0
TCI_BTrue Color Image, Blue channel10 meters0
MSK_CLDPRBCloud Probability Map (missing in some products)010020 meters0
MSK_SNWPRBSnow Probability Map (missing in some products)010010 meters0
QA10Always empty10 meters0
QA20Always empty20 meters0
QA60Cloud mask60 meters0
QA60 Bitmask
  • Bits 0-9: Unused
  • Bit 10: Opaque clouds
    • 0: No opaque clouds
    • 1: Opaque clouds present
  • Bit 11: Cirrus clouds
    • 0: No cirrus clouds
    • 1: Cirrus clouds present
Class Table: SCL
ValueColorColor ValueDescription
1#ff0004Saturated or defective
2#868686Dark Area Pixels
3#774b0aCloud Shadows
4#10d22cVegetation
5#ffff52Bare Soils
6#0000ffWater
7#818181Clouds Low Probability / Unclassified
8#c0c0c0Clouds Medium Probability
9#f1f1f1Clouds High Probability
10#bac5ebCirrus
11#52fff9Snow / Ice
影像属性
NameTypeDescription
AOT_RETRIEVAL_ACCURACYDoubleAccuracy of Aerosol Optical thickness model
CLOUDY_PIXEL_PERCENTAGEDoubleGranule-specific cloudy pixel percentage taken from the original metadata
CLOUD_COVERAGE_ASSESSMENTDoubleCloudy pixel percentage for the whole archive that contains this granule. Taken from the original metadata
CLOUDY_SHADOW_PERCENTAGEDoublePercentage of pixels classified as cloud shadow
DARK_FEATURES_PERCENTAGEDoublePercentage of pixels classified as dark features or shadows
DATASTRIP_IDStringUnique identifier of the datastrip Product Data Item (PDI)
DATATAKE_IDENTIFIERStringUniquely identifies a given Datatake. The ID contains the Sentinel-2 satellite, start date and time, absolute orbit number, and processing baseline.
DATATAKE_TYPEStringMSI operation mode
DEGRADED_MSI_DATA_PERCENTAGEDoublePercentage of degraded MSI and ancillary data
FORMAT_CORRECTNESSStringSynthesis of the On-Line Quality Control (OLQC) checks performed at granule (Product_Syntax) and datastrip (Product Syntax and DS_Consistency) levels
GENERAL_QUALITYStringSynthesis of the OLQC checks performed at the datastrip level (Relative_Orbit_Number)
GENERATION_TIMEDoubleProduct generation time
GEOMETRIC_QUALITYStringSynthesis of the OLQC checks performed at the datastrip level (Attitude_Quality_Indicator)
GRANULE_IDStringUnique identifier of the granule PDI (PDI_ID)
HIGH_PROBA_CLOUDS_PERCENTAGEDoublePercentage of pixels classified as high probability clouds
MEAN_INCIDENCE_AZIMUTH_ANGLE_B1DoubleMean value containing viewing incidence azimuth angle average for band B1 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B2DoubleMean value containing viewing incidence azimuth angle average for band B2 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B3DoubleMean value containing viewing incidence azimuth angle average for band B3 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B4DoubleMean value containing viewing incidence azimuth angle average for band B4 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B5DoubleMean value containing viewing incidence azimuth angle average for band B5 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B6DoubleMean value containing viewing incidence azimuth angle average for band B6 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B7DoubleMean value containing viewing incidence azimuth angle average for band B7 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B8DoubleMean value containing viewing incidence azimuth angle average for band B8 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B8ADoubleMean value containing viewing incidence azimuth angle average for band B8a and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B9DoubleMean value containing viewing incidence azimuth angle average for band B9 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B10DoubleMean value containing viewing incidence azimuth angle average for band B10 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B11DoubleMean value containing viewing incidence azimuth angle average for band B11 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B12DoubleMean value containing viewing incidence azimuth angle average for band B12 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B1DoubleMean value containing viewing incidence zenith angle average for band B1 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B2DoubleMean value containing viewing incidence zenith angle average for band B2 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B3DoubleMean value containing viewing incidence zenith angle average for band B3 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B4DoubleMean value containing viewing incidence zenith angle average for band B4 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B5DoubleMean value containing viewing incidence zenith angle average for band B5 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B6DoubleMean value containing viewing incidence zenith angle average for band B6 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B7DoubleMean value containing viewing incidence zenith angle average for band B7 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B8DoubleMean value containing viewing incidence zenith angle average for band B8 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B8ADoubleMean value containing viewing incidence zenith angle average for band B8a and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B9DoubleMean value containing viewing incidence zenith angle average for band B9 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B10DoubleMean value containing viewing incidence zenith angle average for band B10 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B11DoubleMean value containing viewing incidence zenith angle average for band B11 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B12DoubleMean value containing viewing incidence zenith angle average for band B12 and for all detectors
MEAN_SOLAR_AZIMUTH_ANGLEDoubleMean value containing sun azimuth angle average for all bands and detectors
MEAN_SOLAR_ZENITH_ANGLEDoubleMean value containing sun zenith angle average for all bands and detectors
MEDIUM_PROBA_CLOUDS_PERCENTAGEDoublePercentage of pixels classified as medium probability clouds
MGRS_TILEStringUS-Military Grid Reference System (MGRS) tile
NODATA_PIXEL_PERCENTAGEDoublePercentage of No Data pixels
NOT_VEGETATED_PERCENTAGEDoublePercentage of pixels classified as non-vegetated
PROCESSING_BASELINEStringConfiguration baseline used at the time of the product generation in terms of processor software version and major Ground Image Processing Parameters (GIPP) version
PRODUCT_IDStringThe full id of the original Sentinel-2 product
RADIATIVE_TRANSFER_ACCURACYDoubleAccuracy of radiative transfer model
RADIOMETRIC_QUALITYStringBased on the OLQC reports contained in the Datastrips/QI_DATA with RADIOMETRIC_QUALITY checklist name
REFLECTANCE_CONVERSION_CORRECTIONDoubleEarth-Sun distance correction factor
SATURATED_DEFECTIVE_PIXEL_PERCENTAGEDoublePercentage of saturated or defective pixels
SENSING_ORBIT_DIRECTIONStringImaging orbit direction
SENSING_ORBIT_NUMBERDoubleImaging orbit number
SENSOR_QUALITYStringSynthesis of the OLQC checks performed at granule (Missing_Lines, Corrupted_ISP, and Sensing_Time) and datastrip (Degraded_SAD and Datation_Model) levels
SOLAR_IRRADIANCE_B1DoubleMean solar exoatmospheric irradiance for band B1
SOLAR_IRRADIANCE_B2DoubleMean solar exoatmospheric irradiance for band B2
SOLAR_IRRADIANCE_B3DoubleMean solar exoatmospheric irradiance for band B3
SOLAR_IRRADIANCE_B4DoubleMean solar exoatmospheric irradiance for band B4
SOLAR_IRRADIANCE_B5DoubleMean solar exoatmospheric irradiance for band B5
SOLAR_IRRADIANCE_B6DoubleMean solar exoatmospheric irradiance for band B6
SOLAR_IRRADIANCE_B7DoubleMean solar exoatmospheric irradiance for band B7
SOLAR_IRRADIANCE_B8DoubleMean solar exoatmospheric irradiance for band B8
SOLAR_IRRADIANCE_B8ADoubleMean solar exoatmospheric irradiance for band B8a
SOLAR_IRRADIANCE_B9DoubleMean solar exoatmospheric irradiance for band B9
SOLAR_IRRADIANCE_B10DoubleMean solar exoatmospheric irradiance for band B10
SOLAR_IRRADIANCE_B11DoubleMean solar exoatmospheric irradiance for band B11
SOLAR_IRRADIANCE_B12DoubleMean solar exoatmospheric irradiance for band B12
SNOW_ICE_PERCENTAGEDoublePercentage of pixels classified as snow or ice
SPACECRAFT_NAMEStringSentinel-2 spacecraft name: Sentinel-2A, Sentinel-2B
THIN_CIRRUS_PERCENTAGEDoublePercentage of pixels classified as thin cirrus clouds
UNCLASSIFIED_PERCENTAGEDoublePercentage of unclassified pixels
VEGETATION_PERCENTAGEDoublePercentage of pixels classified as vegetation
WATER_PERCENTAGEDoublePercentage of pixels classified as water
WATER_VAPOUR_RETRIEVAL_ACCURACYDoubleDeclared accuracy of the Water Vapor model

代码

var s2 = ee.ImageCollection('COPERNICUS/S2_HARMONIZED').filterDate('2024-04-01', '2024-04-02')
Map.addLayer(s2.select('MSK_CLASSI_OPAQUE'), {min:0, max:1}, 'New OPAQUE')
Map.addLayer(s2.select('MSK_CLASSI_CIRRUS'), {min:0, max:1}, 'New CIRRUS')
Map.addLayer(s2.select('QA60'), {min:0, max:1}, 'New synthetic QA60')

var s2_sr = ee.ImageCollection('COPERNICUS/S2_HARMONIZED').filterDate('2024-04-01', '2024-04-02')
Map.addLayer(s2_sr.select('MSK_CLASSI_OPAQUE'), {min:0, max:1}, 'New SR OPAQUE')
Map.addLayer(s2_sr.select('MSK_CLASSI_CIRRUS'), {min:0, max:1}, 'New SR CIRRUS')
Map.addLayer(s2_sr.select('QA60'), {min:0, max:1}, 'New SR synthetic QA60')

结果 

 

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1958409.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】std::shared_ptr智能指针详解和示例

在C中,智能指针是一种用于自动管理动态分配内存的机制,旨在减少内存泄漏和野指针的风险。std::shared_ptr 是C标准库提供的几种智能指针之一,它通过共享所有权的机制来管理动态分配的对象。本文将详细解析 std::shared_ptr 的工作原理、特性&…

【电路笔记】-共源JFET放大器

共源JFET放大器 文章目录 共源JFET放大器1、概述2、共源JFET放大器3、JFET放大器电流和功率增益共源JFET放大器使用结场效应晶体管作为其主要有源器件,提供高输入阻抗特性。 1、概述 普通源JFET放大器与共射极BJT放大器相比有一个重要优点,即FET具有极高的输入阻抗,再加上低…

工业三防平板,高效能与轻便性的结合

在当今数字化、智能化的工业时代,工业三防平板作为一种创新的设备,正以其独特的优势在各个领域发挥着重要作用。它不仅具备高效能的处理能力,还拥有出色的轻便性,为工业生产和管理带来了前所未有的便利。 一、高效能的核心动力 工…

2024年中职云计算实验室建设及云计算实训平台整体解决方案

随着信息技术的飞速发展,云计算作为新一代信息技术的核心,正逐步渗透到各行各业,成为推动数字化转型的重要力量。为了适应这一趋势,中职教育作为技能型人才培养的重要阵地,亟需加强云计算实验室建设与云计算实训平台的…

web,apache,nginx

web基本概念和常识 Web:为用户提供的一种在互联网上浏览信息的服务,Web 服务 是动态的、可交 互的、跨平台的和图形化的。 Web 服务为用户提供各种互联网服务,这些服务包括信息浏览服务,以及各种交互式服务,包括聊天、购物、学习…

泰迪智能科技大数据实验室——陕西省高校合作成功案例

近年来,陕西省紧跟国家大数据发展战略,积极推进大数据产业发展。在政策扶持、产业布局、技术创新等方面取得显著成效。泰迪智能科技大数据实验室立足陕西,携手西安邮电大学、西安财经大学、陕西科技大学镐京学院、宝鸡文理学院、渭南师范学院…

编译期链接时共享库搜索路径优先级实验

编译期链接时共享库搜索路径优先级实验 前言实验环境目录说明准备工作单独测试不配置路径默认路径LIBRARY_PATH-L 优先级测试默认路径和LIBRARY_PATH-L和默认路径 DEBUG模式编译器配置详细信息链接器详细信息DEBUG总结验证 默认路径>LIBRARY_PATH原因附录库文件源码主程序源…

bugku-web-ctf-变量1

<?php error_reporting(0); include "flag1.php"; highlight_file(__file__); if(isset($_GET[args])){$args $_GET[args];if(!preg_match("/^\w$/",$args)){die("args error!");}eval("var_dump($$args);"); } ?> error_r…

Apache、nginx

一、Web 1、概述 Web&#xff1a;为⽤户提供的⼀种在互联⽹上浏览信息的服务&#xff0c;Web 服务是动态的、可交互的、跨平台的和图形化的。 Web 服务为⽤户提供各种互联⽹服务&#xff0c;这些服务包括信息浏览服务&#xff0c;以及各种交互式服务&#xff0c;包括聊天、购物…

React基础知识 精简全面 推荐

这篇博文主要对一些刚入门react框架的同学&#xff0c;以及对react基本知识进行巩固的&#xff0c;最后就是精简一下基本知识&#xff0c;以方便自己查看&#xff0c;感谢参考&#xff0c;有问题评论区交流&#xff0c;谢谢。 目录 1.JSX 2.Props 和 State 3.组件生命周期…

“八股文”在实际工作中是助力、阻力还是空谈?

程序员面试中的“八股文”&#xff1a;助力、阻力还是空谈&#xff1f; 在当前的技术行业&#xff0c;程序员的招聘面试过程中频繁出现对“八股文”的考核。“八股文”通常指的是关于编程知识的标准化回答&#xff0c;这些问题在网络上大量流传&#xff0c;并被求职者反复背诵…

Socket通信(C++)

文章目录 什么是SocketSocket通信过程C Socket通信APIint socket(int domain, int type, int protocol);int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);struct sockaddrstruct sockaddr_unstruct sockaddr_in / struct sockaddr_in6 int connect(int …

IP Fabric三层路由

IP Fabric指的是在IP网络基础上建立起来的Overlay隧道技术。即为基于胖树的SpineLeaf拓扑结构的IP Fabric组网图。 在这种组网方式中&#xff0c;任何两台服务器间的通信不超过3台设备&#xff0c;每个Spine和Leaf节点全互连&#xff0c;可以方便地通过扩展Spine节点来实现网络…

Godot学习笔记6——数组和for

一、定义一个数组 在Godot中&#xff0c;定义一个数组的关键字也是“var”&#xff0c;数组里面的内容使用方括号括起来。在没有限定类型时&#xff0c;我们可以放入任何类型的数据&#xff1a; 我们甚至可以将另一个数组放入此数组中&#xff1a; 和其他类型的变量类似&#…

【数据结构】包装类泛型

1.包装类 在 Java 中&#xff0c;由于基本类型不是继承自 Object &#xff0c;为了在泛型代码中可以支持基本类型&#xff0c; Java 给每个基本类型都对应了 一个包装类型。 1.1.基本的数据类型对应的包装类 1.2装箱和拆箱 //装箱int a10;Integer cInteger.valueOf(a);System.…

鸿蒙应用框架开发【简单时钟】 UI框架

简单时钟 介绍 本示例通过使用ohos.display接口以及Canvas组件来实现一个简单的时钟应用。 效果预览 使用说明 1.界面通过setInterval实现周期性实时刷新时间&#xff0c;使用Canvas绘制时钟&#xff0c;指针旋转角度通过计算得出。 例如&#xff1a;"2 * Math.PI / …

Synchronized的锁升级过程是怎样的?

文章目录 一、Synchronized的使用1、修饰实例方法2、修饰静态方法3、修饰代码块4、总结&#xff1a; 二、Monitor1、Java对象头1.1 32 位虚拟机的对象头1.2 64位虚拟机的对象头 2、Mark Word 结构3、Moniter4、Synchronized 字节码5、轻量级锁6、锁膨胀7、自旋优化8、偏向锁9、…

Python for循环迭代原理(迭代器 Iterator)

在使用Python时&#xff0c;我们经常会使用for循环来访问容器对象&#xff08;列表、字符、字典等&#xff09;中的元素。其幕后实际是通过迭代协议来完成的&#xff0c;迭代是一种依次访问对象中元素的方式&#xff0c;for循环在对象上调用iter()函数生成一个迭代器&#xff0…

从后端开发视角认识向量数据库

以ChatGPT为代表的大语言模型应用自问世以来已经火了好几年。在这期间国内外类似产品层出不穷&#xff0c;甚至公司内部团队都开发了好几个AI小助手。刚好最近看了几篇关于大语言模型应用开发的文章&#xff0c;借此了解了一下应用层面的基本知识&#xff0c;也算是接触到了大语…

轻松入门Linux—CentOS,直接拿捏 —/— <2>

一 、权限问题详细讲解 读写的权限可以分别写成 r, w, x 总共有九个权限&#xff0c;可以分组三大组分别是&#xff1a; user&#xff1a;当前文件所属用户的权限 group&#xff1a;与当前文件所属用户同一组的用户权限 others&#xff1a;其他用户的权限 故使用 u, g, o 来代表…