C++中的继承与多态1

news2025/1/16 3:54:05

目录

C++中的继承与多态1

1.继承的概念及定义

1.1继承的概念

1.2 继承定义

1.2.1定义格式

1.2.2继承关系和访问限定符

1.2.3继承基类成员访问方式的变化

2.基类和派生类对象赋值转换

3.继承中的作用域

4.派生类的默认成员函数

5.继承与友元

6.继承与静态成员

7.复杂的菱形继承及菱形虚拟继承

8.继承的总结和反思

9.笔试面试题


C++中的继承与多态1

1.继承的概念及定义

1.1继承的概念

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用

class Person
{
public:
	void Print()
	{
		cout << "name:" << _name << endl;
		cout << "age:" << _age << endl;
	}
protected:
	string _name = "peter"; // 姓名
	int _age = 18;// 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了
//Student和Teacher复用了Person的成员。下面我们使用监视窗口查看Student和Teacher对象,可
//以看到变量的复用。调用Print可以看到成员函数的复用。
class Student : public Person
{
protected:
	int _stuid; // 学号
};

class Teacher : public Person
{
protected:
	int _jobid; // 工号
};
int main()
{
	Student s;
	Teacher t;
	s.Print();
	t.Print();
	return 0;
}

1.2 继承定义

1.2.1定义格式

下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类。

1.2.2继承关系和访问限定符

1.2.3继承基类成员访问方式的变化

 总结:

  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
  2. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
  3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public  > protected> private。
  4. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过最好显示的写出继承方式。
  5. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。

2.基类和派生类对象赋值转换

  • 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。
  • 基类对象不能赋值给派生类对象。
  • 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run-Time Type Information)的dynamic_cast 来进行识别后进行安全转换。(ps:这个我们后面再讲解,这里先了解一下)

class Person
{
protected:
	string _name; // 姓名
	string _sex;  // 性别
	int _age;     // 年龄
};
class Student : public Person
{
public:
	int _No;      // 学号
};
void Test()
{
	Student sobj;
	// 1.子类对象可以赋值给父类对象/指针/引用
	Person pobj = sobj;
	Person* pp = &sobj;
	Person& rp = sobj;

	// 2.基类对象不能赋值给派生类对象
	//sobj = pobj;

	// 3.基类的指针可以通过强制类型转换赋值给派生类的指针
	Student* ps1 = (Student*)pp; // 这种情况转换时可以的。
	ps1->_No = 10;

	pp = &pobj;
	Student* ps2 = (Student*)pp; // 这种情况转换时虽然可以,但是会存在越界访问的问题
	ps2->_No = 10;
}

3.继承中的作用域

  1. 在继承体系中基类派生类都有独立的作用域。
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问)
  3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
  4. 注意在实际中在继承体系里面最好不要定义同名的成员
// Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected:
	string _name = "小李子"; // 姓名
	int _num = 111;          // 身份证号
};
class Student : public Person
{
public:
	void Print()
	{
		cout << " 姓名:" << _name << endl;
		cout << " 身份证号:" << Person::_num << endl;
		cout << " 学号:" << _num << endl;
	}
protected:
	int _num = 999; // 学号
};

void Test()
{
	Student s1;
	s1.Print();
};
// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:
	void fun()
	{
		cout << "func()" << endl;
	}
};
class B : public A
{
public:
	void fun(int i)
	{
		A::fun();
		cout << "func(int i)->" << i << endl;
	}
};
void Test()
{
	B b;
	b.fun(10);
};

int main()
{
	Test();
	return 0;
}

4.派生类的默认成员函数

6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
  2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
  3. 派生类的operator=必须要调用基类的operator=完成基类的复制。
  4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
  5. 派生类对象的初始化先调用基类构造再调派生类构造。
  6. 派生类对象析构清理先调用派生类析构再调基类的析构。
  7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(这个我们后面会讲解)。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。

class Person
{
public:
	Person(const char* name = "peter")
		: _name(name)
	{
		cout << "Person()" << endl;
	}

	Person(const Person& p)
		: _name(p._name)
	{
		cout << "Person(const Person& p)" << endl;
	}

	Person& operator=(const Person& p)
	{
		cout << "Person operator=(const Person& p)" << endl;
		if (this != &p)
			_name = p._name;

		return *this;
	}

	~Person()
	{
		cout << "~Person()" << endl;
	}
protected:
	string _name; // 姓名
};
class Student : public Person
{
public:
	Student(const char* name, int num)
		: Person(name)
		, _num(num)
	{
		cout << "Student()" << endl;
	}
	Student(const Student& s)
		: Person(s)
		, _num(s._num)
	{
		cout << "Student(const Student& s)" << endl;
	}
	Student& operator = (const Student& s)
	{
		cout << "Student& operator= (const Student& s)" << endl;
		if (this != &s)
		{
			Person::operator =(s);
			_num = s._num;
		}
		return *this;
	}
	~Student()
	{
		cout << "~Student()" << endl;
	}
protected:
	int _num; //学号
};

void Test()
{
	Student s1("jack", 18);
	Student s2(s1);
	Student s3("rose", 17);
	s1 = s3;
}

int main()
{
	Test();
	return 0;
}

5.继承与友元

友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员

class Student;//声明Student类
class Person
{
public:
	friend void Display(const Person& p, const Student& s);
protected:
	string _name = "xxxx"; // 姓名
};
class Student : public Person
{
public:
	//不加上此条语句编译会报错,因为友元关系不能继承,基类友元不能访问子类私有和保护成员
	friend void Display(const Person& p, const Student& s);
protected:
	int _stuNum = 1111; // 学号
};
void Display(const Person& p, const Student& s)
{
	cout << p._name << endl;
	cout << s._stuNum << endl;
}
int main()
{
	Person p;
	Student s;
	Display(p, s);
	return 0;
}

6.继承与静态成员

基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个子类,都只有一个static成员实例 。

class Person
{
public:
	Person() { ++_count; }
protected:
	string _name; // 姓名
public:
	static int _count; // 统计人的个数。
};
int Person::_count = 0;
class Student : public Person
{
protected:
	int _stuNum; // 学号
};
class Graduate : public Student
{
protected:
	string _seminarCourse; // 研究科目
};
void TestPerson()
{
	Student s1;
	Student s2;
	Student s3;
	Graduate s4;
	cout << " 人数 :" << Person::_count << endl;
	Student::_count = 0;
	cout << " 人数 :" << Person::_count << endl;
}

int main()
{
	TestPerson();
	return 0;
}

7.复杂的菱形继承及菱形虚拟继承

单继承:一个子类只有一个直接父类时称这个继承关系为单继承

 多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承

 菱形继承:菱形继承是多继承的一种特殊情况

菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。在Assistant的对象中Person成员会有两份。 

class Person
{
public:
	string _name; // 姓名
};
class Student : public Person
{
protected:
	int _num; //学号
};
class Teacher : public Person
{
protected:
	int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
	string _majorCourse; // 主修课程
};
void Test()
{
	
	Assistant a;
	//加上此条语句编译器无法通过,会有二义性无法明确知道访问的是哪一个
	//a._name = "peter";
	//显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决
	a.Student::_name = "xxx";
	a.Teacher::_name = "yyy";
}

int main()
{
	Test();
	return 0;
}

虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。 

class Person
{
public:
	string _name; // 姓名
};
class Student : virtual public Person
{
protected:
	int _num; //学号
};
class Teacher : virtual public Person
{
protected:
	int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
	string _majorCourse; // 主修课程
};
void Test()
{
	Assistant a;
	a._name = "peter";
}
int main()
{
	Test();
	return 0;
}

虚拟继承解决数据冗余和二义性的原理

为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成员的模型。

class A
{
public:
	int _a;
};
// class B : public A
class B : virtual public A
{
public:
	int _b;
};
// class C : public A
class C : virtual public A
{
public:
	int _c;
};
class D : public B, public C
{
public:
	int _d;
};
int main()
{
	D d;
	d.B::_a = 1;
	d.C::_a = 2;
	d._b = 3;
	d._c = 4;
	d._d = 5;
	return 0;
}

下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D对象中将A放到的了对象组成的最下面,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量可以找到下面的A。

 下面是上面的Person关系菱形虚拟继承的原理解释:

8.继承的总结和反思

1. 很多人说C++语法复杂,其实多继承就是一个体现。有了多继承,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设计出菱形继承。否则在复杂度及性能上都有问题。
2. 多继承可以认为是C++的缺陷之一,很多后来的OO语言都没有多继承,如Java。
3. 继承和组合

  • public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。
  • 组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。
  • 优先使用对象组合,而不是类继承。
  • 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称为白箱复用(white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的内部细节对子类可见。继承一定程度破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类间的依赖关系很强,耦合度高。
  • 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装。
  • 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用继承,可以用组合,就用组合。
// Car和BMW Car和Benz构成is-a的关系
class Car 
{
protected:
	string _colour = "白色"; // 颜色
	string _num = "陕ABIT00";
	// 车牌号
};

class BMW : public Car
{
public:
	void Drive() { cout << "好开-操控" << endl; }
};

class Benz : public Car 
{
public:
	void Drive() { cout << "好坐-舒适" << endl; }
};

// Tire和Car构成has-a的关系

class Tire 
{
protected:
	string _brand = "Michelin";// 品牌
	size_t _size = 17;
	// 尺寸
};

class Car 
{
protected:
	string _colour = "白色";
	// 颜色
	string _num = "陕ABIT00";
	// 车牌号
	Tire _t;
	// 轮胎
};

9.笔试面试题

     A
    / \
   B   C
    \ /
     D

1. 什么是菱形继承?菱形继承的问题是什么?

菱形继承(Diamond Inheritance),又称菱形问题,是指在多重继承中,两个子类继承自同一个父类,而一个类又继承自这两个子类,这样会形成一个菱形的继承结构。

菱形继承的问题包括:

  1. 数据冗余:如果类A中有一些数据成员(属性),那么类D会从BC继承这部分数据,可能导致数据重复存储。
  2. 二义性问题:如果类A中有一个方法,类D在继承BC时,调用该方法时可能会遇到二义性,因为编译器或解释器不清楚该调用哪个路径上的方法。

2. 什么是菱形虚拟继承?如何解决数据冗余和二义性的

菱形虚拟继承是一种特殊的继承机制,用来解决菱形继承问题。虚拟继承的主要目的是确保在多重继承结构中,基类只有一份实例。在虚拟继承中,基类的虚拟继承声明会确保即使有多个路径继承到基类,也只会创建一个基类的实例。虚拟继承通过在派生类中使用virtual关键字来声明虚拟继承

如何解决数据冗余和二义性

  1. 解决数据冗余:通过虚拟继承,类D只有一个A类的实例,从而避免了多个实例造成的数据冗余。
  2. 解决二义性:虚拟继承会在内部自动管理基类的单一实例,从而消除二义性。虚拟继承确保从BC继承的A类部分始终是相同的,不会产生冲突。

3. 继承和组合的区别?什么时候用继承?什么时候用组合?

继承组合是两种常用的代码复用技术,它们在设计和实现时各有优缺点。

  • 继承

    • 定义:继承是一种基于类的复用机制,通过派生类继承基类的属性和行为。继承表示“是一个”(is-a)关系。
    • 使用场景
      • 当你希望创建一个新的类,具有现有类的所有功能,并且这些功能的继承是合适的。
      • 当你需要利用已有类的实现,并且这些实现是稳定且不容易改变的。
      • 当你希望重用父类的实现,同时在子类中扩展或修改这些实现。
  • 组合

    • 定义:组合是一种将对象作为类的成员的机制,通过将多个对象组合在一起,来实现类的功能。组合表示“有一个”(has-a)关系。
    • 使用场景
      • 当你希望将多个对象的功能组合在一起,以创建复杂的行为。
      • 当你希望避免继承链的复杂性,或避免因继承而导致的紧耦合。
      • 当你希望实现更多的灵活性,并且能够在运行时动态更改组合的行为。

总结

  • 使用继承:当你确实需要扩展一个类并且想要重用它的实现时,继承是一种很好的选择。继承适合于表示一种“is-a”关系。
  • 使用组合:当你想要创建一个类,它包含多个其他类的功能时,组合是一种更灵活且可扩展的方式。组合适合于表示一种“has-a”关系,可以在运行时更改或扩展其行为。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949949.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

农田环境监测系统—有助于维护农田生态平衡

TH-NQ8农田环境监测系统是一种专为农业领域设计的高科技设备&#xff0c;它通过实时监测农田环境的各项指标&#xff0c;为农业生产提供科学依据&#xff0c;有力地推动了农业的可持续发展。以下是对农田环境监测系统的详细介绍&#xff1a; 系统组成 农田环境监测系统主要由以…

前端学习7——自学习梳理

​​​​​​jQuery 教程 | 菜鸟教程jQuery 教程 jQuery 是一个 JavaScript 库。 jQuery 极大地简化了 JavaScript 编程。 jQuery 很容易学习。 本章节的每一篇都包含了在线实例 通过本站的在线编辑器&#xff0c;你可以在线运行修改后的代码&#xff0c;并查看运行结果。 实例…

手持式气象检测设备:便携科技,气象探测

一、手持式气象检测设备&#xff1a;小巧身躯&#xff0c;大能量 手持式气象检测设备&#xff0c;顾名思义&#xff0c;是一种可以手持操作的气象监测工具。它集成了温度、湿度、气压、风速风向等多种传感器&#xff0c;能够实时获取气象数据&#xff0c;并通过显示屏或手机APP…

聊聊最近很火的13.11和13.8到底谁大?

在最近我是歌手的排名统计中&#xff0c;出现了以下这一幕&#xff1a; 部分网友提出质疑&#xff0c;说是13.11大于13.8&#xff1a; 那么我们肉眼去看&#xff0c;根据我们12年义务教育去比对&#xff0c;肯定是13.8更大一些&#xff0c;但是这样一道简单的数学题还难倒了不少…

java数据结构之排序

前言&#xff1a; 排序在我们日常生活中随处可见&#xff0c;这里将介绍java数据结构里面常见的几种排序。 ps: swap函数的实现&#xff1a; public void swap(int[] arr, int i, int j) {int tmp arr[i];arr[i] arr[j];arr[j] tmp; } 1.直接插入排序 &#xff08;1&a…

如何使用内网穿透为本地部署的开源虚拟机平台Proxmox VE配置公网地址

文章目录 前言1. 局域网访问PVE2. 安装Cpolar 工具3. 创建PVE公网地址4. 远程访问PVE5. 设置固定域名6. 固定地址访问 前言 本文主要介绍如何在Windows环境安装内网穿透工具&#xff0c;实现公网环境远程访问本地局域网中的Proxmox VE平台WEB 管理界面。 Proxmox VE是一个完全…

什么是互联网?

什么是互联网&#xff1f;互联网是由什么组成的&#xff1f;我们身处一个怎样的网络环境&#xff1f;相信很多人其实都无法回答。互联网起始于1969年&#xff0c;至今已经发展为一个极其庞大的全球网络&#xff0c;没有人能够详细描述其全貌。 我觉得这是一个特别奇怪的现象&a…

Nestjs使用Redis的最佳实践

前几天在项目中有用到Redis JWT实现服务端对token的主动删除(退出登录功能)。故此介绍下如何在Nestjs中使用Redis&#xff0c;并做下总结。 知识准备 了解Redis - 网上很多简介。了解Nestjs如何使用jwt生成token - 可移步看下我之前的文章 效果展示 一、mac安装与使用 示…

生成式AI的双重路径:Chat与Agent的融合与竞争

文章目录 每日一句正能量前言整体介绍对话系统&#xff08;Chat&#xff09;自主代理&#xff08;Agent&#xff09;结论 技术对比技术差异优势与劣势技术挑战结论 未来展望发展趋势Chat与Agent的前景社会和经济影响结论 后记 每日一句正能量 在避风的港湾里&#xff0c;找不到…

若依ruoyi+AI项目二次开发

//------------------------- //定义口味名称和口味列表静态数据 const dishFlavorListSelectref([ {name:"辣度",value:["不辣","微辣","中辣","重辣"]}, {name:"忌口",value:["不要葱","不要…

ADG901解析

目录 一、特性二、增强产品特性三、应用四、一般描述五、极低功耗六、引脚描述七、尺寸参数八、电路连接一、特性 宽带开关:-3 dB 在 4.5 GHz吸收型开关高关断隔离度:在 1 GHz 时为 38 dB低插入损耗:在 1 GHz 时为 0.8 dB单一 1.65 V 至 2.75 V 电源CMOS/LVTTL 控制逻辑小巧…

AI无处不在,英特尔举办第十七届网络与边缘计算行业大会,推动边缘AI深度融合

AI正在成为全行业的技术热潮。CSDN 看到&#xff0c;AI正在引发计算、开发、交互三大范式的全面升级&#xff0c;技术开发或将迎来一次全新的科技变革周期。国际权威的分析机构数据也一致显示了AI的快速增长之势。据IDC数据&#xff0c;中国生成式AI的复合年增长率达到86.2%&am…

企业利用AI智能名片S2B2C商城小程序参与社区团购的风险与机遇分析

摘要 在新零售浪潮的推动下&#xff0c;社区团购以其独特的商业模式迅速崛起&#xff0c;成为连接消费者与供应商的重要桥梁。企业纷纷探索如何有效利用这一新兴渠道&#xff0c;以扩大市场份额、提升品牌影响力。AI智能名片S2B2C商城小程序的引入&#xff0c;为企业参与社区团…

Spring源码学习笔记之@Async源码

文章目录 一、简介二、异步任务Async的使用方法2.1、第一步、配置类上加EnableAsync注解2.2、第二步、自定义线程池2.2.1、方法一、不配置自定义线程池使用默认线程池2.2.2、方法二、使用AsyncConfigurer指定线程池2.2.3、方法三、使用自定义的线程池Excutor2.2.4、方法四、使用…

家长读本编辑部家长读本杂志家长读本杂志社2024年第6期目录

新型教育 如何为孩子上好一堂科学课? (1) 孙瑜 全面实施“关爱微心愿”活动——福建宁德:汇聚星光,点亮学生“微心愿” (4) 黄荣夏 如何将STEM教育融入初中数学教学活动 (6) 罗淑萍 小学语文“读思达”教学法的推进策略 (9) 王湘福《家长读本》投稿&#xff1a;cn…

PE文件(十二)导入表

导入表 导入表的引入 当一个PE文件&#xff08;如.dll/.exe等&#xff09;需要使用别的模块的函数&#xff0c;也叫做依赖某模块&#xff0c;就需要一个清单来记录使用的模块&#xff08;一般为.dll文件&#xff0c;为方便理解&#xff0c;以后我们将模块都认为是.dll文件&am…

重磅发布:OpenAI宣布推出AI驱动的搜索引擎SearchGPT,将与Google和Perplexity展开竞争|TodayAI

OpenAI宣布推出其备受期待的AI驱动搜索引擎SearchGPT。该搜索引擎能够实时访问互联网信息&#xff0c;并将作为原型在有限范围内发布&#xff0c;计划最终将其功能整合到ChatGPT中。 SearchGPT的功能特点 SearchGPT是一个具有实时互联网信息访问能力的AI驱动搜索引擎。它的界面…

GoFly快速开发框架基于Go语言和Vue3开发后台管理附件管理插件包

说明 为了给客户提供更好的交互体验&#xff0c;框架把附件管理独立打包成插件包&#xff0c;这样附件管理接可以做个不通需求的附件管理插件包来满足不同甲方客户需求。 目前附件插件包有2个&#xff1a;一个基础包、一个高级包 附件插件包功能 1.基础包 统一管理业务系统…

Python酷库之旅-第三方库Pandas(046)

目录 一、用法精讲 161、pandas.Series.cumsum方法 161-1、语法 161-2、参数 161-3、功能 161-4、返回值 161-5、说明 161-6、用法 161-6-1、数据准备 161-6-2、代码示例 161-6-3、结果输出 162、pandas.Series.describe方法 162-1、语法 162-2、参数 162-3、功…

深入解析:inode、软硬链接与动静态库的奥秘

目录 一.inode1.inode的介绍2.文件系统与inode3.“目录”再理解 二.软硬链接1.硬链接2.软连接 三.动静态库1.静态库2.动态库3.动态库的加载过程 一.inode 1.inode的介绍 在Linux操作系统中&#xff0c;‘inode(索引节点)是文件系统的核心组件之一&#xff0c;用于管理文件和目…