【机器学习】GPT LoRA:大模型微调的艺术与效率

news2025/1/16 22:01:24

在这里插入图片描述


文章目录
  • 往期热门专栏回顾
  • 1、前言介绍
    • 1.1、文生图效果
  • 2、LoRA的工作原理
  • 3、LoRA的应用场景
  • 4、LoRA的优势
  • 5、LoRA的挑战
  • 6、LoRA的实现
  • 7、未来展望

1、前言介绍

在深度学习和自然语言处理领域,大规模预训练模型(如GPT-3、BERT等)已经展示了强大的能力。然而,训练这些模型需要大量的计算资源和数据,这对于许多组织和个人来说并不现实。LoRA(Low-Rank Adaptation)作为一种轻量级的微调方法,提供了一种高效且经济的解决方案。本文将详细介绍LoRA的工作原理、应用场景、以及其在大模型微调中的优势和挑战。

1.1、文生图效果

提示词:
//quality, (masterpiece:1.3), (detailed), ((,best quality,)),//,cute,1girl,//,brown cat ears,animal ear fluff,(light_brown hair:1.3),(red hair: 1.1),(red inner hair: 1.4), (straight bangs: 1.4),(,long_hair,single braid :1.4),(Ahoge),(detailed eyes,blue_eyes:1.4),medium chest,//, (yellow hairpin,crescent-shaped hairpin:1.4),off_shoulders,large red ribbon,(idol costume:1.4),thigh strap,frilled skirt,gloves,//,blush,smiling,upper_teeth,looking_down,//,hand_up,(holding microphone:1.3),(standing on stage),//,indoors,crowd of audience,Glow stick,scenery,colorful light particles,(colorful lights:1.3),(laser light:1.4),glow_in_the_dark,cowboy_shot,dynamic angle

反向提示词:
NSFW,text,(worst quality:1.331), (low quality:1.331), (normal quality:1.331), large head, extra digits, bad eye, extra fingers, fewer fingers, strange fingers, ((bad hands)), Strange eyes, Many hands, (Many arms), EasyNegativeV2, ng_deepnegative_v1_75t, pregnancy, badhandv4, six fingers, fused fingers, unclear eyes,poorly drawn,cloned face,bad face,

在提示词、反向提示词不变的情况下,我们在导入多个LoRA,并且调整参数,来生成我们想要的图片。

三个LoRA:
在这里插入图片描述

调整LoRA值之后的效果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、LoRA的工作原理

LoRA通过引入低秩矩阵分解技术来微调大型预训练模型。其核心思想是将预训练模型的权重矩阵分解为两个低秩矩阵的乘积,从而减少需要微调的参数数量。具体而言,LoRA假设原始权重矩阵W可以近似表示为两个低秩矩阵A和B的乘积,即W ≈ AB,其中A和B的秩远小于W的秩。

在微调过程中,LoRA仅优化低秩矩阵A和B,而保持原始模型权重W不变。这种方法不仅降低了计算复杂度,还减少了存储和传输的开销,使得微调过程更加高效。

3、LoRA的应用场景

  • 自然语言处理(NLP): LoRA在NLP任务中表现出色,如文本分类、机器翻译、情感分析等。通过微调预训练模型,LoRA可以快速适应不同的语言任务和数据集。

  • 计算机视觉: 在图像分类、目标检测和图像生成等任务中,LoRA也展示了强大的适应能力。通过微调预训练的视觉模型,LoRA可以在有限的计算资源下实现高效的图像处理。

  • 语音识别: LoRA在语音识别和语音生成任务中同样具有广泛的应用前景。通过微调预训练的语音模型,LoRA可以有效提升语音识别的准确性和生成质量。

4、LoRA的优势

  • 高效性: LoRA通过低秩矩阵分解显著减少了需要微调的参数数量,从而降低了计算复杂度和存储开销。这使得微调过程更加高效,尤其适合资源受限的环境。

  • 灵活性: LoRA可以应用于各种预训练模型和任务,具有广泛的适应性。无论是NLP、计算机视觉还是语音识别,LoRA都能提供有效的微调方案。

  • 经济性: 相对于全量微调(fine-tuning)大模型,LoRA需要的计算资源和时间成本大大降低。这对于小型团队和个人研究者来说尤为重要,使他们能够在有限的资源下实现高效的模型优化。

5、LoRA的挑战

  • 低秩近似的局限性: LoRA依赖于低秩矩阵分解来近似表示权重矩阵。然而,在某些情况下,低秩近似可能无法充分捕捉复杂的模型结构和数据特征,导致性能下降。

  • 模型选择的复杂性: 在实际应用中,不同任务和数据集对模型的需求各不相同。选择合适的预训练模型和微调策略仍然是一个挑战,需要进行大量的实验和调优。

  • 安全性和隐私: 在微调过程中,模型可能会接触到敏感数据。如何在保证数据安全和隐私的前提下进行高效的微调,是LoRA面临的另一个重要挑战。

6、LoRA的实现

为了更好地理解LoRA的实际应用,以下是一个基于PyTorch的LoRA实现示例。

import torch
import torch.nn as nn

class LoRA(nn.Module):
    def __init__(self, model, rank=4):
        super(LoRA, self).__init__()
        self.model = model
        self.rank = rank
        self.low_rank_modules = nn.ModuleList()

        for name, module in model.named_modules():
            if isinstance(module, nn.Linear):
                in_features, out_features = module.in_features, module.out_features
                A = nn.Parameter(torch.randn(out_features, rank))
                B = nn.Parameter(torch.randn(rank, in_features))
                self.low_rank_modules.append((name, A, B))

    def forward(self, x):
        for name, A, B in self.low_rank_modules:
            module = dict(self.model.named_modules())[name]
            W = module.weight
            low_rank_weight = A @ B
            module.weight = nn.Parameter(W + low_rank_weight)
        return self.model(x)



7、未来展望

随着深度学习和大规模预训练模型的发展,LoRA作为一种高效的微调方法,将在更多领域和应用中发挥重要作用。未来,LoRA可能会进一步优化低秩分解技术,提高近似的精度和效率。此外,LoRA还可以与其他优化技术结合,形成更强大的微调框架。

总之,LoRA为大规模预训练模型的高效微调提供了新的思路和方法。通过降低计算复杂度和存储开销,LoRA使得更多人能够利用预训练模型的强大能力,推动人工智能技术的普及和应用。期待未来LoRA在更多领域中的创新和突破,为深度学习的发展注入新的活力。


如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ansible基础讲解和加密文件讲解

ansible最重要的三个文件 /etc/ansible/ansible.cfg #####ansible的配置文件 /etc/ansible/host ##清单文件inventory ansible-navigator.yml ####以yml结尾的文件可以理解为conf结尾的文件,是配置文件,用于设置剧本playbook playbook讲解 以.yml结…

【Android】Activity与Fragment的数据传递

上一篇文章学到了碎片的创建与生命周期,接下来学习碎片的常用操作,其中会用到上一篇文章的三个碎片,就做一个简单的说明吧:LeftFragment(包含一个按钮)、RightFragment4(以粉色为背景的文本&…

优化医疗数据管理:Kettle ETL 数据采集方案详解

在现代医疗保健领域,数据的准确性、完整性和及时性对于提高医疗服务质量和患者护理至关重要。为了有效管理和利用医疗数据,Kettle ETL(Extract, Transform, Load)数据采集方案成为了许多医疗机构的首选工具之一。本文将深入探讨Ke…

【Gitlab】SSH配置和克隆仓库

生成SSH Key ssh-keygen -t rsa -b 4096 私钥文件: id_rsa 公钥文件:id_rsa.pub 复制生成的ssh公钥到此处 克隆仓库 git clone repo-address 需要进行推送和同步来更新本地和服务器的文件 推送更新内容 git push <remote><branch> 拉取更新内容 git pull &…

MySQL数据库的DQL的高级数据查询语句

目录 非等值联查&#xff1a; 等值联查&#xff1a; eg&#xff1a;5张表联查 连接查询——left/right/inner join on eg: 连接查询——union Eg&#xff1a; 不去重的并集——union all 子查询&#xff08;内部查询&#xff09; 1、where型子查询 2、from型子查询&a…

Servlet2-HTTP协议、HttpServletRequest类、HttpServletResponse类

目录 HTTP协议 什么是HTTP协议 HTTP协议的特点 请求的HTTP协议格式 GET请求 POST请求 常用的请求头说明 哪些是GET请求&#xff0c;哪些是POST请求 响应的HTTP协议格式 常见的响应码说明 MIME类型说明 HttpServletRequest类 作用 常用方法 如何获取请求参数 po…

Linux:基础

一、安装 二、 一些组件 2.1 git管理 集中式版本控制系统:版本库是集中存放在中央服务器的,需要时要先从中央服务器取得最新的版本进行修改,修改后再推送给中央服务器。集中式版本控制系统最大的毛病就是必须联网才能工作,网速慢的话影响太大。 分布式版本控制系统:分布…

MySQL SQL 编程练习

目录 创建表并插入数据 查看表结构 创建触发器 创建INSERT 触发器 创建DELETE 触发器 创建更新触发器 创建存储过程 创建提取emp_new表所有员工姓名和工资的存储过程s1 创建存储过程s2&#xff0c;实现输入员工姓名后返回员工的年龄 创建一个存储过程s3&#xff0c;有2个参数&…

Apache ShardingSphere Proxy5.5.0实现MySQL分库分表与读写分离

1. 前提准备 1.1 主机IP:192.168.186.77 version: 3.8services:mysql-master:image: mysql:latestcontainer_name: mysql-masterenvironment:MYSQL_ROOT_PASSWORD: 123456MYSQL_USER: masterMYSQL_PASSWORD: 123456MYSQL_DATABASE: db1 ports:- "3306:3306&quo…

搭建NFS、web、dns服务器

目录 1、搭建一个nfs服务器&#xff0c;客户端可以从该服务器的/share目录上传并下载文件 服务端配置&#xff1a; 客户端测试&#xff1a; 2、搭建一个Web服务器&#xff0c;客户端通过www.haha.com访问该网站时能够看到内容:this is haha 服务端配置&#xff1a; 客户端…

UE5+OpenCV配置(Windows11系统)

一、概述 因为需要在UE5中使用OpenCV这些工具进行配置&#xff0c;所以在网络上参考借鉴一些资料进行配置。查询到不少的资料&#xff0c;最后将其配置成功。在这里顺便记录一下自己的配置成功的过程。 二、具体过程 &#xff08;一&#xff09;版本 使用Windows11系统、UE5.…

vue3前端开发-小兔鲜项目-路由拦截器增加token的携带

vue3前端开发-小兔鲜项目-路由拦截器增加token的携带&#xff01;实际开发中&#xff0c;很多业务接口的请求&#xff0c;都要求必须是登录状态&#xff01;为此&#xff0c;这个token信息就会频繁的被加入到了请求头部信息中。request请求头内既然需要频繁的携带这个token.我们…

百易云资产管理运营系统 comfileup.php 文件上传致RCE漏洞复现(XVE-2024-18154)

0x01 产品简介 百易云资产管理运营系统,是专门针对企业不动产资产管理和运营需求而设计的一套综合解决方案。该系统能够覆盖资产的全生命周期管理,包括资产的登记、盘点、评估、处置等多个环节,同时提供强大的运营分析功能,帮助企业优化资产配置,提升运营效率。 0x02 漏…

BUUCTF [安洵杯 2019]easy_serialize_php

这道题题目说easy但是对我来说极其不友好&#xff01;看了很多wp讲的模棱两可&#xff0c;我尽量来说清楚点 代码解析&#xff1a; 这里$function $_GET[f]&#xff0c;是我们通过get方式传递的&#xff0c;因为注释提示有东西先传fphpinfo看看 找到了一个东西&#xff0c;很…

linux下usb抓包:wireshark+usbmon

step1. 加载usbmon模块 sudo mount -t debugfs none /sys/kernel/debug #这一步一般不用做&#xff0c;debugfs默认都是挂载的 sudo modprobe usbmon #如果这个命令找不到usbmon&#xff0c;那手动从/lib/modules中insmod sudo apt-get install wireshark 若加载成功&…

收银系统对零售连锁门店有什么作用?

随着人们生活水平的提高&#xff0c;各类零售门店也越来越多&#xff0c;对于零售连锁门店来说&#xff0c;如何提高客流量和客户忠诚度&#xff0c;提高会员的单次消费能力是一个重大的问题&#xff0c;能够决定性影响门店盈利额&#xff1b;从收银软件出发&#xff0c;一款好…

【文心智能体】00后疯感工牌生成器,低代码工作流的简单应用以及图片快速响应解决方案,干活满满,不容错过哦

背景 文心智能体平台&#xff0c;开启新一轮活动&#xff0c;超级创造营持续百日活动。 在AI 浪潮席卷的今天&#xff0c;如雨后春笋般丛生的 AI 应用&#xff0c;昭告着时代风口显然已随之到来。 如何能把握住时代红利&#xff0c;占据风口&#xff0c;甚至打造新风向&#x…

设计模式14-享元模式

设计模式14-享元模式 由来动机定义与结构代码推导特点享元模式的应用总结优点缺点使用享元模式的注意事项 由来动机 在很多应用中&#xff0c;可能会创建大量相似对象&#xff0c;例如在文字处理器中每个字符对象。在这些场景下&#xff0c;如果每个对象都独立存在&#xff0c…

Notion的离线替代方案Eidos

什么是 Eidos &#xff1f; Eidos 是 Notion 的离线替代品。Eidos 是一个可扩展的框架&#xff0c;用于在一个地方管理您一生的个人数据。 软件特点&#xff1a; 一切在您的浏览器内运行。这是一个纯 PWA&#xff0c;没有 Web 服务器。 离线支持&#xff1a;无需互联网连接即可…