【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

news2024/11/15 11:15:10

目录

一、引言 

二、深度估计(depth-estimation)

2.1 概述

2.2 技术路径

2.3 应用场景

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第一篇,深度估计(depth-estimation),在huggingface库内有106个图片深度估计的模型。

二、深度估计(depth-estimation)

2.1 概述

深度估计是一种计算机视觉任务,旨在从2D图像估计深度。该任务需要输入RGB图像并输出深度图像。深度图像包括关于从视点到图像中的物体的距离的信息,该视点通常是拍摄图像的相机。

2.2 技术路径

2014年之前,采用传统的方法进行深度估计,2014年之后采用深度学习方法,同时分为监督和半监督/无监督两条roadmap。

首先看一下基于深度学习方法depth-estimation的开山之作Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

模型架构使用堆叠的卷积层预测,该论文发表于2014年,早于VGG,所以网络结构遵循AlexNet的设计。其希望捕捉全局信息和布局信息,蓝色框部分用于得到粗略的全局信息,而且Coarse 5和Coarse 6部分使用的是全连接层;橙色框部分处理原图和得到的全局信息,最终预测得到深度图。训练过程分为两步,第一步先训练coarse网络,然后冻结之后再训练fine网络。 

再看2024年较火的由港大&字节提出用于任意图像的深度估计大模型:Depth Anything

  • 首先, 基于数据集 Dl 学习一个老师模型 T;
  • 然后, 利用 T 为数据集 Du 赋予伪标签;
  • 最后, 基于两个数据训练一个学生模型 S 。

2.3 应用场景

  • 自动驾驶与机器人导航:在自动驾驶车辆和各种服务机器人中,通过单目摄像头获取环境图像,估计出前方或周围物体的距离,对于避障、路径规划至关重要。
  • 增强现实(AR):在AR应用中,准确估计摄像头与现实世界之间的深度关系,是实现虚拟物体与真实环境无缝融合的关键。
  • 3D建模与重建:从单目视频或图像序列中估计深度,可以用于构建场景的3D模型,应用于考古、建筑、室内设计等领域。
  • 无人机导航与避障:无人机在执行复杂飞行任务时,需要实时理解周围环境的深度信息,单目深度估计可以提供这种能力,尤其是在成本和重量敏感的应用中。
  • 物体识别与抓取:在机器人操作和自动化仓库系统中,单目深度估计帮助机器人准确识别和抓取物体,提高自动化效率。
  • 地形测绘:在无人机遥感、农业监测等应用中,单目相机结合其他传感器数据,可以辅助进行地形的快速测绘和分析。

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。
  • modelcardstrModelCard可选)— 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.4.2 pipeline对象使用参数 

  • imagesstrList[str]PIL.ImageList[PIL.Image]——管道处理三种类型的图像:
    • 包含指向图像的 http 链接的字符串
    • 包含图像本地路径的字符串
    • 直接在 PIL 中加载的图像

    管道可以接受单张图片或一批图片,然后必须以字符串形式传递。一批图片必须全部采用相同的格式:全部为 http 链接、全部为本地路径或全部为 PIL 图片。

  • timeout可选float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。

2.4 pipeline实战

将http链接中的两只猫咪图片进行深度估计

采用pipeline代码如下

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline
depth_estimator = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf")
output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
output["depth"].save("depth.png")
print(output)

output中的结果为

{'predicted_depth': tensor([[[26.3997, 26.3004, 26.3929,  ..., 24.8488, 24.9059, 20.0686],
         [26.2260, 26.2093, 26.3428,  ..., 24.8447, 24.6682, 24.6084],
         [26.0719, 26.0483, 26.1255,  ..., 24.7053, 24.6745, 24.5809],
         ...,
         [43.2635, 43.2344, 43.2892,  ..., 39.0545, 39.2170, 39.0817],
         [43.3637, 43.2703, 43.3899,  ..., 39.1390, 38.9937, 39.0317],
         [38.7509, 43.2192, 43.4387,  ..., 38.5407, 38.3691, 35.3691]]]), 'depth': <PIL.Image.Image image mode=L size=640x480 at 0x7FAA9F2E5CD0>}

将Image类型的图片保存并打开

基于此深度估计图片,我们可以进行上色等处理。 

2.5 模型排名

在huggingface上,我们将深度估计(depth-estimation)模型按下载量从高到低排序:

三、总结

本文对transformers之pipeline的深度估计(depth-estimation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的使用计算机视觉中的深度估计(depth-estimation)模型,应用于3D建模、自动驾驶距离测算等。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)​​​​​​​

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)​​​​​​​

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1945901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Stable Diffusion】AI生成新玩法:图像风格迁移

【Stable Diffusion】 AI生成新玩法&#xff1a;图像风格迁移 1 背景导入 你是否曾梦想过让自己融入梵高的星空之中 或是将一幅风景画赋予毕加索的立体主义之魂 还是把人物送进宫崎骏的动画世界&#xff1f; 下面让我们来看看如何通过 Stable Diffusion 实现在图像中玩…

本地部署,Whisper: 开源语音识别模型

目录 简介 特点 应用 使用方法 总结 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - openai/whisperhttps://github.com/openai/whisper 简介 Whisper 是一个由 O…

mysql面试(二)

前言 这是mysql面试基础的第二节&#xff0c;主要是了解一下mysql数据更新的基本流程&#xff0c;还有三大日志的作用。但是具体的比如undolog是如何应用在mvcc机制中的&#xff0c;由于篇幅问题就放在下一在章节 数据更新流程 上面是说了更新真正数据之前的大致流程&#x…

19023 砍树

这个问题可以通过二分查找来解决。我们可以设定一个范围&#xff0c;然后在这个范围内查找最大的高度&#xff0c;使得砍下的木材长度至少为M。 以下是C的解决方案&#xff1a; #include <iostream> #include <vector> #include <algorithm> using namespa…

解决R语言找不到系统库导致的报错

1、基本需知 1.1、系统库 系统库&#xff08;System library&#xff09;是一组预先编写和编译好的软件模块集合&#xff0c;用于支持操作系统的基本功能和提供一些常见的服务。这些库通常由操作系统或第三方开发者提供&#xff0c;并且在系统安装过程中被预装或者用户可以额…

【Linux】通过分配虚拟内存的方式来解决因内存不够而导致部署的项目自动挂掉

多个 jar 包项目部署在同一台服务器上&#xff0c;当服务器配置低&#xff0c;内存不足时&#xff0c;有可能出现 nohup java -jar 启动的进程就莫名其妙挂掉的问题。 解决方式&#xff1a; 第一种方法&#xff1a;进行JVM调优可以改善这种情况&#xff0c;但是项目太多&…

DNS域名管理系统、搭建DNS服务

1.DNS概述 1.DNS&#xff08;domain name system &#xff09; 域名管理系统 域名&#xff1a; 由特定的格式组成&#xff0c;⽤来表示互联⽹中某⼀台计算机或者计算机组的名称&#xff0c;能够使⼈更⽅便的访问互联⽹&#xff0c;⽽不⽤记住能够被机器直接读取的IP地址。 计算…

JS+H5可视化广度优先算法

源码在效果图后面 可标记 障碍 起始点 终点 点击寻路按钮后&#xff0c;表格上会自动出现一条蓝色最佳路径&#xff08;加了一格一格显示的动画&#xff09; 以下是效果图 橙色起点 绿色终点 红色障碍物 以下是寻路结果 源代码 <!DOCTYPE html> <html lang&quo…

「运费速查神器」精明买家必备!一键查询1688供应商发货费用

对于从事跨境买家还是国内电商买家&#xff0c;在选品时&#xff0c;需要全面考虑商品成本&#xff0c;发货费用是供应链成本的重要组成部分。 原来如果我们在1688选品看供应商发货运费&#xff0c;需要一个个单独点击到商品的详情页去查看&#xff0c;再选择具体的收货地、再…

【C# WInForm】将TextBox从输入框设置为文本框

1.需求情形&#xff1a; textbox作为最常用的控件之一&#xff0c;通常是用来输入文本信息或者显示文字&#xff0c;但是如果要在界面中显示大段文本&#xff0c;一个带有边框、可选中的文本样式似乎不合适。像这样&#xff1a; 我需要的是这段文字不仅能跨行&#xff0c;而且…

浏览器打开PDF卡在加载(侧边翻译插件打不开PDF)

如果你的浏览器安装了一些翻译插件&#xff0c;那么可能会导致PDF加载不出来 比如我的浏览器中安装了“侧边翻译”&#xff0c;而我在view Elsever的论文时出现了加载不出来的问题—— 仍然以此扩展为例&#xff0c;那么解决办法是&#xff1a; 取消勾选——

2023 N1CTF-n1proxy

文章目录 参考rsa握手rust_proxy源码公匙交换和签名会话钥匙后续通信生命周期和裸指针代码审计漏洞点 libc-2.27.so大致思路&#xff08;exp还有变化&#xff09;调试exp泄露libc写free_hook执行命令exp 参考 https://github.com/Nu1LCTF/n1ctf-2023/tree/main/pwn/n1proxy ht…

【数据结构】AVL树(平衡二叉搜索树)

文章目录 1.AVL树1.1 AVL树的概念1.2 AVL树节点的定义1.3 AVL树的插入1.4 AVL树的旋转1.4.1 左单旋1.4.2 右单旋1.4.3 右左双旋1.4.4 左右双旋 1.5 AVL树的平衡验证1.6 AVL树的删除1.7 AVL树的性能 1.AVL树 在前面&#xff0c;我们已经介绍过了二叉搜索树&#xff0c;也了解到…

03 capture软件操作界面和常用设置介绍04 capture软件自带元件库设置

03 capture软件操作界面和常用设置介绍&&04 capture软件自带元件库设置 第一部分 03 capture软件操作界面和常用设置介绍一、分辨率二、产品选择三、颜色设置四、格点设置 第二部分 04 capture软件自带元件库设置 第一部分 03 capture软件操作界面和常用设置介绍 一、…

初识c++:string类(2)

#本节主要讲解c&#xff1a;string类的模拟实现 全部代码的实现在最后面&#xff01;&#xff01;&#xff01;有需要的自己往下滑&#xff0c;自取&#xff01;&#xff01;&#xff01;1.string类的模拟实现 2.浅拷贝 3.深拷贝 目录 #本节主要讲解c&#xff1a;string类…

使用Ollama和OpenWebUI,轻松探索Meta Llama3–8B

大家好&#xff0c;2024年4月&#xff0c;Meta公司开源了Llama 3 AI模型&#xff0c;迅速在AI社区引起轰动。紧接着&#xff0c;Ollama工具宣布支持Llama 3&#xff0c;为本地部署大型模型提供了极大的便利。 本文将介绍如何利用Ollama工具&#xff0c;实现Llama 3–8B模型的本…

WEB前端10- Fetch API(同步/异步/跨域处理)

Fetch API Fetch API 可以用来获取远程数据&#xff0c;用于在 Web 应用程序中发起和处理 HTTP 请求。它基于 Promise&#xff0c;提供了一种简单而强大的方式来处理网络通信&#xff0c;替代了传统的 XMLHttpRequest。 Promise对象 Promise 对象是 JavaScript 中处理异步操…

Netty:基于NIO的 Java 网络应用编程框架

Netty 是一个被广泛使用的&#xff0c;基于NIO的 Java 网络应用编程框架&#xff0c;Netty框架可以帮助开发者快速、简单的实现客户端和服务端的网络应用程序。“快速”和“简单”并不用产生维护性或性能上的问题。Netty 利用 Java 语言的NIO网络编程的能力&#xff0c;并隐藏其…

C++ 鼠标轨迹API【神诺科技SDK】

一.鼠标轨迹模拟简介 传统的鼠标轨迹模拟依赖于简单的数学模型&#xff0c;如直线或曲线路径。然而&#xff0c;这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现&#xff0c;使得神诺科技 能够通过深度学习技术&#xff0c;学习并模拟更自然的鼠标移动行为。 二.…

Spring Security 介绍

1.概要 Spring Security是一个用于在Java应用程序中实现身份验证和访问控制的强大框架。它可以轻松地集成到任何基于Spring的应用程序中&#xff0c;提供了一套丰富的功能来保护应用程序的安全性。 https://spring.io/projects/spring-security/ demo:https://docs.spring.i…