STM32智能农业监测与控制系统教程

news2024/11/13 10:07:17

目录

  1. 引言
  2. 环境准备
  3. 智能农业监测与控制系统基础
  4. 代码实现:实现智能农业监测与控制系统 4.1 数据采集模块 4.2 数据处理与分析模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:农业监测与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能农业监测与控制系统通过STM32嵌入式系统结合传感器、执行器和通信模块,实现对农业环境的实时监控、自动控制和数据传输。本文将详细介绍如何在STM32系统中实现一个智能农业监测与控制系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、土壤湿度传感器、光照传感器等
  4. 执行器:如水泵、电磁阀、风扇等
  5. 通信模块:如Wi-Fi模块、蓝牙模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能农业监测与控制系统基础

控制系统架构

智能农业监测与控制系统由以下部分组成:

  1. 数据采集模块:用于采集温湿度、土壤湿度、光照强度等环境数据
  2. 数据处理与分析模块:对采集的数据进行处理和分析
  3. 通信与网络系统:实现农业数据与服务器或其他设备的通信
  4. 显示系统:用于显示农业环境数据和系统状态
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集农业环境数据,并实时显示在OLED显示屏上。系统通过数据处理和通信模块,实现对农业环境的实时监控和自动控制。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能农业监测与控制系统

4.1 数据采集模块

配置温湿度传感器

使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"

I2C_HandleTypeDef hi2c1;

void I2C1_Init(void) {
    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = 0;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    HAL_I2C_Init(&hi2c1);
}

void Read_Temperature_Humidity(float* temperature, float* humidity) {
    DHT22_ReadAll(temperature, humidity);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        HAL_Delay(1000);
    }
}
配置土壤湿度传感器

使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc1;

void ADC_Init(void) {
    __HAL_RCC_ADC1_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc1.Instance = ADC1;
    hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc1.Init.Resolution = ADC_RESOLUTION_12B;
    hadc1.Init.ScanConvMode = DISABLE;
    hadc1.Init.ContinuousConvMode = ENABLE;
    hadc1.Init.DiscontinuousConvMode = DISABLE;
    hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc1.Init.NbrOfConversion = 1;
    hadc1.Init.DMAContinuousRequests = DISABLE;
    hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc1);

    sConfig.Channel = ADC_CHANNEL_0;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}

uint32_t Read_Soil_Moisture(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC_Init();

    uint32_t soil_moisture;

    while (1) {
        soil_moisture = Read_Soil_Moisture();
        HAL_Delay(1000);
    }
}
配置光照传感器

使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc2;

void ADC2_Init(void) {
    __HAL_RCC_ADC2_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc2.Instance = ADC2;
    hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc2.Init.Resolution = ADC_RESOLUTION_12B;
    hadc2.Init.ScanConvMode = DISABLE;
    hadc2.Init.ContinuousConvMode = ENABLE;
    hadc2.Init.DiscontinuousConvMode = DISABLE;
    hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc2.Init.NbrOfConversion = 1;
    hadc2.Init.DMAContinuousRequests = DISABLE;
    hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc2);

    sConfig.Channel = ADC_CHANNEL_1;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc2, &sConfig);
}

uint32_t Read_Light_Intensity(void) {
    HAL_ADC_Start(&hadc2);
    HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc2);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC2_Init();

    uint32_t light_intensity;

    while (1) {
        light_intensity = Read_Light_Intensity();
        HAL_Delay(1000);
    }
}

4.2 数据处理与分析

数据处理与分析模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

农业环境控制算法

实现一个简单的环境控制算法,根据传感器数据生成控制信号:

void Process_Agricultural_Data(float temperature, float humidity, uint32_t soil_moisture, uint32_t light_intensity) {
    // 控制温度
    if (temperature > 30.0) {
        // 启动冷却风扇
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET);
    } else {
        // 关闭冷却风扇
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
    }

    // 控制湿度
    if (humidity < 40.0) {
        // 启动加湿器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);
    } else {
        // 关闭加湿器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET);
    }

    // 控制土壤湿度
    if (soil_moisture < 300) {
        // 启动水泵
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_SET);
    } else {
        // 关闭水泵
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET);
    }

    // 控制光照强度
    if (light_intensity < 200) {
        // 启动补光灯
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
    } else {
        // 关闭补光灯
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
    }
}

void GPIOB_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIOB_Init();
    I2C1_Init();
    ADC_Init();
    ADC2_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t soil_moisture, light_intensity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        soil_moisture = Read_Soil_Moisture();
        light_intensity = Read_Light_Intensity();

        Process_Agricultural_Data(temperature, humidity, soil_moisture, light_intensity);

        HAL_Delay(1000);
    }
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"

UART_HandleTypeDef huart2;

void UART2_Init(void) {
    huart2.Instance = USART2;
    huart2.Init.BaudRate = 115200;
    huart2.Init.WordLength = UART_WORDLENGTH_8B;
    huart2.Init.StopBits = UART_STOPBITS_1;
    huart2.Init.Parity = UART_PARITY_NONE;
    huart2.Init.Mode = UART_MODE_TX_RX;
    huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart2.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart2);
}

void Send_Agricultural_Data_To_Server(float temperature, float humidity, uint32_t soil_moisture, uint32_t light_intensity) {
    char buffer[128];
    sprintf(buffer, "Temp: %.2f, Humidity: %.2f, Soil Moisture: %lu, Light: %lu",
            temperature, humidity, soil_moisture, light_intensity);
    HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART2_Init();
    GPIOB_Init();
    I2C1_Init();
    ADC_Init();
    ADC2_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t soil_moisture, light_intensity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        soil_moisture = Read_Soil_Moisture();
        light_intensity = Read_Light_Intensity();

        Process_Agricultural_Data(temperature, humidity, soil_moisture, light_intensity);

        Send_Agricultural_Data_To_Server(temperature, humidity, soil_moisture, light_intensity);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将农业环境数据展示在OLED屏幕上:

void Display_Agricultural_Data(float temperature, float humidity, uint32_t soil_moisture, uint32_t light_intensity) {
    char buffer[32];
    sprintf(buffer, "Temp: %.2f C", temperature);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Humidity: %.2f %%", humidity);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "Soil Moisture: %lu", soil_moisture);
    OLED_ShowString(0, 2, buffer);
    sprintf(buffer, "Light: %lu", light_intensity);
    OLED_ShowString(0, 3, buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    Display_Init();
    GPIOB_Init();
    ADC_Init();
    ADC2_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t soil_moisture, light_intensity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        soil_moisture = Read_Soil_Moisture();
        light_intensity = Read_Light_Intensity();

        // 显示农业环境数据
        Display_Agricultural_Data(temperature, humidity, soil_moisture, light_intensity);

        HAL_Delay(1000);
    }
}

5. 应用场景:农业监测与优化

智能温室管理

智能农业监测与控制系统可以用于温室管理,通过实时监测和控制温度、湿度、光照等环境参数,优化植物生长环境,提高作物产量和质量。

大田种植监测

智能农业监测与控制系统可以用于大田种植,通过监测土壤湿度、温度等参数,智能化灌溉和施肥,提高农业生产效率和资源利用率。

农业环境监测

智能农业监测与控制系统可以用于农业环境监测,通过监测空气质量、气象参数等,提前预警异常天气和环境变化,保障农作物安全。

农业物联网应用

智能农业监测与控制系统可以用于农业物联网应用,通过数据采集和传输,构建农业大数据平台,实现智能化农业管理和决策支持。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1945569.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑基础知识 | 电脑的基本组成

电脑作为我们日常工作和娱乐的重要工具&#xff0c;扮演着举足轻重的角色。当我们谈论电脑的基本组成时&#xff0c;其实是在探讨电脑硬件和软件两个核心部分。硬件是电脑看得见、摸得着的物理设备&#xff0c;而软件则是运行在这些硬件之上的程序和指令。两者相辅相成&#xf…

深入浅出mediasoup—WebRtcTransport

mediasoup 提供了多种 transport&#xff0c;包括 WebRtcTransport、PipeTransport、DirectTransport、PlainTransport 等&#xff0c;用来实现不同目的和场景的媒体通信。WebRtcTransport 是 mediasoup 实现与 WebRTC 客户端进行媒体通信的对象&#xff0c;是 mediasoup 最重要…

Electron案例解析——切换主题颜色的案例

效果图 核心 Electron的 nativeTheme.themeSource属性&#xff0c;值是string。有三个参数&#xff1a;system, light 和 dark&#xff0c;用来覆盖、重写Chromium内部的相应的值 Election的api描述值nativeTheme.themeSource被用来覆盖、重写Chromium内部的相应的值system, …

swagger-ui.html报错404

问题1&#xff1a;权限受限无法访问 由于采用的Shiro安全框架&#xff0c;需要在配置类ShiroConfig下的Shiro 的过滤器链放行该页面&#xff1a;【添加&#xff1a;filterChainDefinitionMap.put("/swagger-ui.html", "anon");】 public ShiroFilterFact…

springboot失物招领论坛系统-计算机毕业设计源码56603

目 录 1 绪论 1.1 研究背景与意义 1.2国内外研究现状 1.3论文结构与章节安排 2 系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 法律可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.2.2 非功能性分析 2.3 系统用例分析 2.4 系统流程…

QT 信号槽机制

核心函数为 QMetaObject::Connection QObject::connect(const QObject *sender, const char *signal, const QObject *receiver, const char *method, Qt::ConnectionType type Qt::AutoConnection) 参数为 1.信号发生对象 2.信号发生对象的信号 3.槽对象 4.槽对象的槽函…

CAD框架介绍

1、适用范围&#xff1a;矢量编辑软件如 服装模板软件、CAD软件、绘图软件 2、支持PLT,DXF,PDF,GCode&#xff08;服装裁割指令)等矢量文件导入 3、支持简易的自动手动排料 4、直线&#xff0c;曲线等编辑功能 5、分页输出绘图指令 6、良好的框架结构&#xff1a;绘图引擎…

单向链表

目录 思维导图&#xff1a; 学习内容&#xff1a; 1. 链表的引入 1.1 顺序表的优缺点 1.1.1 优点 1.1.2 不足 1.1.3 缺点 1.2 链表的概念 1.2.1 链式存储的线性表叫做链表 1.2.2 链表的基础概念 1.3 链表的分类 2. 单向链表 2.1 节点结构体类型 2.2 创建链表 2.…

员工网络监控软件:把控员工网络活动的标尺

在竞争激烈的漩涡之中&#xff0c;企业如同一只不断旋转的陀螺&#xff0c;努力保持着自身的平衡和稳定&#xff0c;而员工的网络活动则是那无形却强大的力量&#xff0c;时刻影响着企业的运转。员工网络监控软件仿佛一根坚固无比的轴心&#xff0c;以其精准的标尺帮助企业实现…

分类模型-逻辑回归和Fisher线性判别分析★★★★

该博客为个人学习清风建模的学习笔记&#xff0c;部分课程可以在B站&#xff1a;【强烈推荐】清风&#xff1a;数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili 目录 1理论 1.1逻辑回归模型 1.2线性概率模型 1.3线性判别分析 1.4两点分布…

基于区块链的算力交易平台

目录 基于区块链的算力交易平台 核心技术 创新点 算力交易流程和拍卖算法 关键技术 创新点 基于区块链的算力交易平台 核心技术 智能合约: 定义:智能合约是一组情景应对型的程序化规则和逻辑,通过部署在区块链上的去中心化、可信共享的脚本代码实现。作用:智能合…

leetcode10 -- 正则表达式匹配

题目描述&#xff1a; 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符* 匹配零个或多个前面的那一个元素 所谓匹配&#xff0c;是要涵盖 整个 字符串 s的&#xff0c;而不是部分字符串。 示例 1&#xff1…

【工具】轻松转换JSON与Markdown表格——自制Obsidian插件

文章目录 一、插件简介二、功能详解三、使用教程四、插件代码五、总结 一、插件简介 JsonMdTableConverter是一款用于Obsidian的插件&#xff0c;它可以帮助用户在JSON格式和Markdown表格之间进行快速转换。这款插件具有以下特点&#xff1a; 轻松识别并转换JSON与Markdown表格…

解锁PCIe8516高速数据采集卡应用——超声波无损检测

超声波无损检测是无损检测技术的重要手段之一&#xff0c;由于其信号的高频特性&#xff0c;需要采用高速数据采集设备来采集、记录、分析和处理。 某客户需要使用超声波对钢材进行无损检测&#xff0c;由于声波在钢材中的传播速度很高&#xff0c;(纵波CL的传播速度为5900米/秒…

分布式训练并行策略

1.分布式训练的概念 分布式训练&#xff08;Distributed Training&#xff09;是指将机器学习或深度学习模型训练任务分解成多个子任 务&#xff0c;并在多个计算设备上并行地进行训练。 一个模型训练任务往往会有大量的训练样本作为输入&#xff0c;可以利用一个计算设备完成…

【C语言】链式队列的实现

队列基本概念 首先我们要了解什么是队列&#xff0c;队列里面包含什么。 队列是线性表的一种是一种先进先出&#xff08;First In Fi Out&#xff09;的数据结构。在需要排队的场景下有很强的应用性。有数组队列也有链式队列&#xff0c;数组实现的队列时间复杂度太大&#x…

PySide(PyQt),自定义图标按钮

1、在Qt Designer中新建画面&#xff0c;并放置3个按钮&#xff08;QPushButton&#xff09;和一个分组框&#xff08;QGroupBox&#xff09;小部件&#xff0c;分别命名为btn_1&#xff0c; btn_2&#xff0c;btn_3和btnStation。 2、将所有小部件的显示文字内容删除。 3、将…

前端面试宝典【Javascript篇】【1】

欢迎来到《前端面试宝典》&#xff0c;这里是你通往互联网大厂的专属通道&#xff0c;专为渴望在前端领域大放异彩的你量身定制。通过本专栏的学习&#xff0c;无论是一线大厂还是初创企业的面试&#xff0c;都能自信满满地展现你的实力。 核心特色&#xff1a; 独家实战案例…

畅销款超声波眼镜清洗器该怎么选?2024年最强超声波清洗机推荐指南

眼镜是现代生活中不可或缺的物品&#xff0c;但许多人可能不清楚如何正确清洁眼镜。传统的清洁方法可能会对眼镜造成损害&#xff0c;例如使用普通肥皂或清水清洗时容易划伤镜片。为了解决这个问题&#xff0c;家用超声眼镜波清洗机应运而生。超声波清洗机通过超声波振动原理进…

昇思MindSpore 应用学习-CycleGAN图像风格迁移互换

日期 心得 昇思MindSpore 应用学习-CycleGAN图像风格迁移互换&#xff08;AI代码学习&#xff09; CycleGAN图像风格迁移互换 模型介绍 模型简介 CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络&#xff0c;来自论文 Unpaired Image-to-Image Trans…