前言:《Go语言编程》编著 许式伟 吕桂华 等
1.1 变量
var v1 int
var v2 string
var v3 [10]int // 数组
var v4 []int // 数组切片
var v5 struct {
f int
}
var v6 *int // 指针
var v7 map[string]int // map,key为string类型,value为int类型
var v8 func(a int) int
var
关键字的另一种用法是可以将若干个需要声明的变量放置在一起,免得程序员需要重复
写
var
关键字,如下所示:
var (
v1 int
v2 string
)
对于声明变量时需要进行初始化的场景,
var
关键字可以保留,但不再是必要的元素,如下
所示:
var v1 int = 10 // 正确的使用方式1
var v2 = 10 // 正确的使用方式2,编译器可以自动推导出v2的类型
v3 := 10 // 正确的使用方式3,编译器可以自动推导出v3的类型
以上三种用法的效果是完全一样的。与第一种用法相比,第三种用法需要输入的字符数大大
减少,是懒程序员和聪明程序员的最佳选择。
当然,出现在
:=
左侧的变量不应该是已经被声明过的,否则会导致编译错误,比如下面这个
写法:
var i int
i := 2
会导致类似如下的编译错误:
no new variables on left side of :=
Go
语言中提供了
C/C++
程序员期盼多年的多重赋值功 能,比如下面这个交换i和
j
变量的语句:
i, j = j, i
在不支持多重赋值的语言中,交互两个变量的内容需要引入一个中间变量:
t = i; i = j; j = t;
2.匿名变量
在使用传统的强类型语言编程时,经常会出现这种情况,即在调用函数时为了获取一个
值,却因为该函数返回多个值而不得不定义一堆没用的变量。在
Go
中这种情况可以通过结合使
用多重返回和匿名变量
来避免这种丑陋的写法,让代码看起来更加优雅。
假 设 GetName() 函数的定义如下,它返回 3 个值,分别为 firstName 、 lastName 和nickName :
func GetName() (firstName, lastName, nickName string) {
return "May", "Chan", "Chibi Maruko"
}
若只想获得 nickName ,则函数调用语句可以用如下方式编写:
_, _, nickName := GetName()
3.常量
常量可以是数值类型(包括整型、 浮点型和复数类型)、布尔类型、字符串类型等。
3.1
字面常量(
literal
),是指程序中硬编码的常量
-12
3.14159265358979323846 // 浮点类型的常量
3.2+12i // 复数类型的常量
true // 布尔类型的常量
"foo" // 字符串常量
3.2 常量定义,通过const关键字,可以给字面常量指定一个友好的名字:
const Pi float64 = 3.14159265358979323846
const zero = 0.0 // 无类型浮点常量
const (
size int64 = 1024
eof = -1 // 无类型整型常量
)
const u, v float32 = 0, 3 // u = 0.0, v = 3.0,常量的多重赋值
const a, b, c = 3, 4, "foo"
// a = 3, b = 4, c = "foo", 无类型整型和字符串常量
Go
的常量定义可以限定常量类型,但不是必需的。如果定义常量时没有指定类型,那么它
与字面常量一样,是无类型常量。
(1)
常量定义的右值也可以是一个在编译期运算的常量表达式,比如
const mask = 1 << 3
(2)由于常量的赋值是一个编译期行为,所以右值不能出现任何需要运行期才能得出结果的表达
式,比如试图以如下方式定义常量就会导致编译错误:
const Home = os.GetEnv("HOME")
因为
os.GetEnv()
只有在运行期才能知道返回结果,在编译期并不能确定,所以无法作为常量定义的右值。
4.预定义常量
Go 语言预定义了这些常量: true 、 false 和 iota 。
iota 比较特殊,可以被认为是一个可被编译器修改的常量,在每一个const关键字出现时被
重置为0,然后在下一个const出现之前,每出现一次iota,其所代表的数字会自动增1。
const ( // iota被重设为0
c0 = iota // c0 == 0
c1 = iota // c1 == 1
c2 = iota // c2 == 2
)
const (
a = 1 << iota // a == 1 (iota在每个const开头被重设为0)
b = 1 << iota // b == 2
c = 1 << iota // c == 4
)
const (
u = iota * 42 // u == 0
v float64 = iota * 42 // v == 42.0
w = iota * 42 // w == 84
)
const x = iota // x == 0 (因为iota又被重设为0了)
const y = iota // y == 0 (同上)
如果两个const的赋值语句的表达式是一样的,那么可以省略后一个赋值表达式。因此,上
面的前两个const语句可简写为:
const ( // iota被重设为0
c0 = iota // c0 == 0
c1 // c1 == 1
c2 // c2 == 2
)
const (
a = 1 <<iota // a == 1 (iota在每个const开头被重设为0)
b // b == 2
c // c == 4
)
5. 枚举
(1)Go 不支持支持的enum关键字
(2)可以用在const后跟一对圆括号的方式定义一组常量,这种定义法在Go语言中通常用于定义
枚举值
const (
Sunday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
numberOfDays // 这个常量没有导出
)
注意:
- ① 同Go语言的其他符号(symbol)一样,以大写字母开头的常量在包外可见
- ② 以上例子中numberOfDays为包内私有,其他符号则可被其他包访问
6. 类型
- 布尔类型:bool
- 整型:int8、byte、int16、int、uint、uintptr等
- 浮点类型:float32、float64
- 复数类型:complex64、complex128
- 字符串:string
- 字符类型:rune
- 错误类型:error
此外,
Go
语言也支持以下这些复合类型:
- 指针(pointer)
- 数组(array)
- 切片(slice)
- 字典(map)
- 通道(chan)
- 结构体(struct)
- 接口(interface)
7. 布尔类型
var v1 bool
v1 = true
v2 := (1 == 2) // v2也会被推导为bool类型
布尔类型不能接受其他类型的赋值,不支持自动或强制的类型转换。以下的示例是一些错误的用法,会导致编译错误:
var b bool
b = 1 // 编译错误
b = bool(1) // 编译错误
以下的用法才是正确的:
var b bool
b = (1!=0) // 编译正确
fmt.Println("Result:", b) // 打印结果为Result: true
8.整型
int
和
int32
在
Go语言里被认为是两种不同的类型,编译器也不会帮你自动做类型转换
var value2 int32
value1 := 64 // value1将会被自动推导为int类型
value2 = value1 // 编译错误
编译错误类似于:
cannot use value1 (type int) as type int32 in assignment。
使用强制类型转换可以解决这个编译错误:
value2 = int32(value1) // 编译通过
两个不同类型的整型数不能直接比较,比如
int8
类型的数和
int
类型的数不能直接比较,但各种类型的整型变量都可以直接与字面常量(literal
)进行比较,比如:
var i int32
var j int64
i, j = 1, 2
if i == j { // 编译错误
fmt.Println("i and j are equal.")
}
if i == 1 || j == 2 { // 编译通过
fmt.Println("i and j are equal.")
}
9. 浮点型
Go
语言定义了两个类型
float32和float64,其中:
- float32等价于C语言的float类型
- float64等价于C语言的double类型
var fvalue1 float32
fvalue1 = 12
fvalue2 := 12.0 // 如果不加小数点,fvalue2会被推导为整型而不是浮点型
对于以上例子中类型被自动推导的
fvalue2
,需要注意的是其类型将被自动设为
float64
, 而不管赋给它的数字是否是用32
位长度表示的。因此,对于以上的例子,下面的赋值将导致编译错误:
fvalue1 = fvalue2
而必须使用这样的强制类型转换:
fvalue1 = float32(fvalue2)
注意:浮点数的比较
直接用==来判断两个浮点数是否相等是不可行的,这可能会导致不稳定的结果
下面是一种推荐的替代方案:
import "math"
// p为用户自定义的比较精度,比如0.00001
func IsEqual(f1, f2, p float64) bool {
return math.Fdim(f1, f2) < p
}
10. 复数类型
var value1 complex64 // 由2个float32构成的复数类型
value1 = 3.2 + 12i
value2 := 3.2 + 12i // value2是complex128类型
value3 := complex(3.2, 12) // value3结果同 value2
11.字符串
Go
语言中字符串的声明和初始化非常简单,举例如下:
var str string // 声明一个字符串变量
str = "Hello world" // 字符串赋值
ch := str[0] // 取字符串的第一个字符
fmt.Printf("The length of \"%s\" is %d \n", str, len(str))
fmt.Printf("The first character of \"%s\" is %c.\n", str, ch)
输出结果为:
The length of "Hello world" is 11
The first character of "Hello world" is H.
字符串的内容可以用类似于数组下标的方式获取,但与数组不同,
字符串的内容不能在初始
化后被修改
,比如以下的例子:
str := "Hello world" // 字符串也支持声明时进行初始化的做法
str[0] = 'X' // 编译错误
编译器会报类似如下的错误:
cannot assign to str[0]
Go 编译器支持 UTF-8 的源代码文件格式。这意味着源代码中的字符串可以包含非 ANSI 的字符,比如“ Hello world. 你好,世界!”可以出现在 Go 代码中。但需要注意的是,如果你的 Go 代 码需要包含非ANSI 字符,保存源文件时请注意编码格式必须选择 UTF-8 。特别是 Windows 下一 般编辑器都默认存为本地编码,比如中国地区可能是GBK 编码而不是 UTF-8 ,如果没注意这点在 编译和运行时就会出现一些意料之外的情况。
(1)字符串操作
(2)字符串遍历
str := "Hello,世界"
n := len(str)
for i := 0; i < n; i++ {
ch := str[i] // 依据下标取字符串中的字符,类型为byte
fmt.Println(i, ch)
}
这个例子的输出结果为:
0 72
1 101
2 108
3 108
4 111
5 44
6 32
7 228
8 184
9 150
10 231
11 149
12 140
可以看出,这个字符串长度为
13
。尽管从直观上来说,这个字符串应该只有
9
个字符。这是
因为每个中文字符在
UTF-8
中占
3
个字节,而不是
1
个字节。
另一种是以Unicode字符遍历:
str := "Hello,世界"
for i, ch := range str {
fmt.Println(i, ch)//ch的类型为rune
}
输出结果为:
0 72
1 101
2 108
3 108
4 111
5 44
6 32
7 19990
10 30028
以Unicode字符方式遍历时,每个字符的类型是rune(早期的Go语言用int类型表示Unicode字符),而不是byte。
12.数组
[32]byte // 长度为32的数组,每个元素为一个字节
[2*N] struct { x, y int32 } // 复杂类型数组
[1000]*float64 // 指针数组
[3][5]int // 二维数组
[2][2][2]float64 // 等同于[2]([2]([2]float64))
从以上类型也可以看出,数组可以是多维的,比如
[3][5]int
就表达了一个
3
行
5
列的二维整
型数组,总共可以存放
15
个整型元素。
数组的长度是该数组类型的一个内置常量,可以用Go语言的内置函数len()来获取:
arrLength := len(arr)
(1)元素访问
for i := 0; i < len(array); i++ {
fmt.Println("Element", i, "of array is", array[i])
}
for i, v := range array {
fmt.Println("Array element[", i, "]=", v)
}
在上面的例子里可以看到,
range
具有两个返回值,第一个返回值是元素的数组下标,第二
个返回值是元素的值
(2)值类型
所有的值类型变量在赋值和作为参数传递时都将产生一次复制动作。如果将数组作为函数的参数类型,则在函数调用时该参数将发生数据复制。因此,在函数体中无法修改传入的数组的内容,因为函数内操作的只是所传入数组的一个副本。
package main
import "fmt"
func modify(array [10]int) {
array[0] = 10 // 试图修改数组的第一个元素
fmt.Println("In modify(), array values:", array)
}
func main() {
array := [5]int{1,2,3,4,5} // 定义并初始化一个数组
modify(array) // 传递给一个函数,并试图在函数体内修改这个数组内容
fmt.Println("In main(), array values:", array)
}
该程序的执行结果为:
In modify(), array values: [10 2 3 4 5]
In main(), array values: [1 2 3 4 5]
从执行结果可以看出,函数
modify()
内操作的那个数组跟
main()
中传入的数组是两个不同的实
例。
13.数组切片
数组的特点:
- 数组的长度在定义之后无法再次修改;
- 数组是值类型, 每次传递都将产生一份副本。显然这种数据结构无法完全满足开发者的真实需求。
数组切片(slice)
这个非常酷的功能来弥补数组的不足
数组切片实际上它拥有自己的数据结构,而不仅仅是个指针
数组切片的数据结构可以抽象为以下
3
个变量:
- 一个指向原生数组的指针
- 数组切片中的元素个数
- 数组切片已分配的存储空
基于数组,数组切片添加了一系列管理功能,可以随时动态扩充存放空间,并且可以被随意传递而不会导致所管理的元素被重复复制
(1)创建数组切片
创建方法:
- ① 基于数组
- ② 直接创建
slice.go
package main
import "fmt"
func main() {
// 先定义一个数组
var myArray [10]int = [10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
// 基于数组创建一个数组切片
var mySlice []int = myArray[:5]
fmt.Println("Elements of myArray: ")
for _, v := range myArray {
fmt.Print(v, " ")
}
fmt.Println("\nElements of mySlice: ")
for _, v := range mySlice {
fmt.Print(v, " ")
}
fmt.Println()
}
运行结果为:
Elements of myArray:
1 2 3 4 5 6 7 8 9 10
Elements of mySlice:
1 2 3 4 5
Go
语言支持用
myArray[first:last]这样的方式
来基于数组生成一个数组切片,而且这个用法还很灵活,比如下面几种都是合法的。
- 基于数组
// 基于myArray的所有元素创建数组切片:
mySlice = myArray[:]
// 基于myArray的前5个元素创建数组切片:
mySlice = myArray[:5]
// 基于从第5个元素开始的所有元素创建数组切片:
mySlice = myArray[5:]
- 直接创建
并非一定要事先准备一个数组才能创建数组切片。Go语言提供的内置函数make()可以用于灵活地创建数组切片
// 创建一个初始元素个数为5的数组切片,元素初始值为0:
mySlice1 := make([]int, 5)
// 创建一个初始元素个数为5的数组切片,元素初始值为0,并预留10个元素的存储空间:
mySlice2 := make([]int, 5, 10)
// 直接创建并初始化包含5个元素的数组切片:
mySlice3 := []int{1, 2, 3, 4, 5}
当然,事实上还会有一个匿名数组被创建出来,只是不需要我们来操心而已。
(2)元素遍历
操作数组元素的所有方法都适用于数组切片,比如数组切片也可以按下标读写元素,用
len() 函数获取元素个数,并支持使用range
关键字来快速遍历所有元素。
// 传统的元素遍历方法如下:
for i := 0; i <len(mySlice); i++ {
fmt.Println("mySlice[", i, "] =", mySlice[i])
}
// 使用range关键字可以让遍历代码显得更整洁。range表达式有两个返回值,第一个是索引,第二个是元素的值:
for i, v := range mySlice {
fmt.Println("mySlice[", i, "] =", v)
}
对比上面的两个方法,我们可以很容易地看出使用
range
的代码更简单易懂
(3)动态增减元素
与数组相比,数组切片多了一个存储能力(capacity )的概念,即元素个数和分配的空间可以是两个不同的值。合理地设置存储能力的值, 可以大幅降低数组切片内部重新分配内存和搬送内存块的频率 ,从而大大提高程序性能。
- 数组切片支持Go语言内置的cap()函数和len()函数
package main
import "fmt"
func main() {
mySlice := make([]int, 5, 10)
fmt.Println("len(mySlice):", len(mySlice))
fmt.Println("cap(mySlice):", cap(mySlice))
}
该程序的输出结果为:
len(mySlice): 5
cap(mySlice): 10
- 如果需要往上例中mySlice已包含的5个元素后面继续新增元素,可以使用append()函数
mySlice = append(mySlice, 1, 2, 3)
函数
append()
的第二个参数其实是一个不定参数,我们可以按自己需求添加若干个元素, 甚至直接将一个数组切片追加到另一个数组切片的末尾:
mySlice2 := []int{8, 9, 10}
// 给mySlice后面添加另一个数组切片
mySlice = append(mySlice, mySlice2...)
func SliceLenCap() {
mySlice := make([]int, 5, 10)
for i := range mySlice {
mySlice[i] = i
}
fmt.Println("len(mySlice):", len(mySlice))
fmt.Println("cap(mySlice):", cap(mySlice))
fmt.Println("可以从尾端给mySlice加上3个元素:5,6,7")
mySlice = append(mySlice, 5, 6, 7)
for _, v := range mySlice {
fmt.Print(v, " ")
}
fmt.Println()
fmt.Println("给mySlice后面添加另一个数组切片")
mySlice2 := []int{8, 9, 10}
// 给mySlice后面添加另一个数组切片
mySlice = append(mySlice, mySlice2...)
for _, v := range mySlice {
fmt.Print(v, " ")
}
fmt.Println()
}
数组切片会自动处理存储空间不足的问题。如果追加的内容长度超过当前已分配的存储空间
(即
cap()
调用返回的信息),数组切片会自动分配一块足够大的内存。
(4)
基于数组切片创建数组切片
- 类似于数组切片可以基于一个数组创建,数组切片也可以基于于另一个数组切片创建
oldSlice := []int{1, 2, 3, 4, 5}
newSlice := oldSlice[:3] // 基于oldSlice的前3个元素构建新数组切片
14.map
- 在Go中,使用map不需要引入任何库,并且用起来也更加方便
func MapCase() {
var personDB map[string]PersonInfo
personDB = make(map[string]PersonInfo)
// 往这个map里插入几条数据
personDB["100001"] = PersonInfo{"100001", "张三", "Room 203"}
personDB["100002"] = PersonInfo{"100002", "李四", "Room 204"}
// 从这个map查找键为"100001"的信息
person, ok := personDB["100001"]
// ok 是一个返回的bool型,返回true表示找到了对应的数据
if ok {
fmt.Println("Found person", person.Name, "with ID 100001.")
} else {
fmt.Println("Cannot find person with ID 100001.")
}
}
上面这个简单的例子基本上已经覆盖了
map
的主要用法,下面对其中的关键点进行细述:
(1)变量声明
map
的声明基本上没有多余的元素,比如:
var myMap map[string] PersonInfo
其中,myMap是声明的map变量名,string是键的类型,PersonInfo则是其中所存放的值类型。
(2)创建
可以使用Go语言内置的函数make()来创建一个新map
myMap = make(map[string] PersonInfo)
也可以选择是否在创建时指定该map的初始存储能力,下面的例子创建了一个初始存储能力为100的map:
myMap = make(map[string] PersonInfo, 100)
创建并初始化map代码如下:
myMap = map[string] PersonInfo{
"1234": PersonInfo{"1", "Jack", "Room 101,..."},
}
(3)元素赋值
// 是将键和值用下面的方式对应起来即可:
myMap["1234"] = PersonInfo{"1", "Jack", "Room 101,..."}
(4)元素删除
// Go语言提供了一个内置函数delete(),用于删除容器内的元素
delete(myMap, "1234")
(5)元素查找
在
Go 语言中,要从map
中查找一个特定的键,可以通过下面的代码来实现:
value, ok := myMap["1234"]
if ok { // 找到了
// 处理找到的value
}
判断是否成功找到特定的键,不需要检查取到的值是否为
nil
,只需查看第二个返回值
ok
, 这让表意清晰很多。配合:=
操作符,让你的代码没有多余成分,看起来非常清晰易懂。