1.推导基础:
#已知正转正拉电流近似为:
curr_in_upward = (im + im*(rm+(lm+l2)*2*np.pi*freq_in*1j)/(r2 + l2*2*np.pi*freq_in*1j + (1-s)/s*r2))
#同工况同负载,正转反拉电流近似为:
curr_in_downward = (im + im*(rm+(lm+l2)*2*np.pi*freq_in*1j)/(r2 + l2*2*np.pi*freq_in*1j - (1+s)/s*r2))
其中,curr_in_upward, curr_in_downward为测量值,
im, rm, lm, r2, l2, freq_in为定值,
s为未知变量
2. 等价变换
这个过程属于符号推导,matlab可以做,但是这个问题很简单,先手算一次,先合并常量:
等价变换1:
#已知正转正拉电流近似为:
curr_in_upward = (im + im*(rm+lm2*ff)/(r2 + lf + (1-s)/s*r2))
#同工况同负载,正转反拉电流近似为:
curr_in_downward = (im + im*(rm+lm2*ff)/(r2 + lf- (1+s)/s*r2))
#进而得到:
curr_in_upward = (im + irl/(rlf + (1-s)/s*r2))
curr_in_downward = (im + irl/(rlf- (1+s)/s*r2))
3.计算dI的实际值
由:
curr_in_upward = (im + irl/(rlf + (1-s)/s*r2))
curr_in_downward = (im + irl/(rlf- (1+s)/s*r2))
得到:
dI_up2down = (im + irl/(rlf + (1-s)/s*r2)) - (im + irl/(rlf- (1+s)/s*r2))
等价于:
dI_up2down = irl/(rlf + (1-s)/s*r2)) - irl/(rlf- (1+s)/s*r2))
等价于:
dI_up2down = a/(b + (1-s)/s*c)) - a/(b- (1+s)/s*c))
得到:
di_up2down*(b + (1-s)/s*c))*(b- (1+s)/s*c)) = a*(b- (1+s)/s*c)) - a*(b + (1-s)/s*c))
4.继续化简:
di_up2down*(b + (1-s)/s*c))*(b- (1+s)/s*c)) = a*(b- (1+s)/s*c)) - a*(b + (1-s)/s*c))
#令:di_up2down = y,则有:
y*(b + (1-s)/s*c))*(b- (1+s)/s*c)) = a*(b- (1+s)/s*c)) - a*(b + (1-s)/s*c))
#有:
y*(b*s + (1-s)*c)*(b*s-(1+s)*c) = a*b*s*s - a*(1+s)*s*c - a*b*s*s - a*(1-s)*s*c
#注意上一步计算左侧使用了乘法的分配率:
#消去同类项有:
y*(b*s + (1-s)*c)*(b*s-(1+s)*c) + a*(1+s)*s*c + a*(1-s)*s*c = 0
#进一步消去同类项:
y*(b*s + (1-s)*c)*(b*s-(1+s)*c) + 2*a*s*c = 0
#进而
y*(b*s + c -c*s)*(b*s - c - c*s) + 2*a*c*s = 0
#进而:
y*((b-c)*s + c)*((b-c)*s -c) + 2*a*c*s = 0
#进而
y*((b-c)*s*s -c*c) + 2*a*c*s = 0
4.代入最初的化简项:
y*((b-c)*s*s -c*c) + 2*a*c*s = 0
#其中
a = irl
b = rlf
c = r2
irl =
.....好麻烦,还是用matlab处理一下。刚刚看到,python无法进行符号计算,但是可以进行符号推导:
import sympy as sp
# 定义符号变量
x, y = sp.symbols('x y')
# 定义符号表达式
expr = (x**2 - y**2) / (x - y)
# 进行符号化简
simplified_expr = sp.simplify(expr)
print(simplified_expr)
那个线性关系是一种近似。因为s很小。最终化简的形式确实是这样的:
dI = (a*s+b*1j)/(c*s*s +d)
其中,因为 c,d近似,大概在0.5左右,因为s在计算时趋近于0.02, b很小。
所以dI ≈ a/c*s....近似线性。我大概测试过5~6台电机,线性度都很好。并且,那个di是s的上百倍,非常适合测量:
5.标量,矢量?
发现搞错了一点,上面的计算始终用了矢量减,但事实上,真实的测量中用到是标量减。实际的测量值应当如上图所示。
做dI运算时,如果是矢量减,其实意味着把等效电路中im回路的电流消掉了。i2回路的电流,在负载不大时,上下行,感抗回路的电流也能近似抵消,所以,就只有等效电阻相关的电流留下了。
6.在全部的s区间绘图,并把计算值归一化:
上面的三条曲线自上而下分别对应:
1.线电流本身
2.上下行电流矢量差
3.上下行电流标量差
所以,我们还是需要从标量的电流值,推导出矢量的电流;或者,通过拟合出线电流曲线,并进而依据当时的工况,来推导s-I的关系。