RMSNorm
论文:https://openreview.net/pdf?id=SygkZ3MTJE
Github:https://github.com/bzhangGo/rmsnorm?tab=readme-ov-file
论文假设LayerNorm中的重新居中不变性是可有可无的,并提出了均方根层归一化(RMSNorm)。RMSNorm根据均方根(RMS)将一层神经元的总和输入正则化,得到模型重新缩放不变性特性和隐式学习率适应能力
LayerNorm 公式
深度学习当中,没有线性激活函数的预测公式
a i = ∑ j = 1 m w i j x j , y i = f ( a i + b i ) , \begin{aligned}a_i=\sum_{j=1}^mw_{ij}x_j,\quad y_i=f\left(a_i+b_i\right),\end{aligned} ai=j=1∑mwijxj,yi=f(ai+bi),
通过激活函数后,其中,随着前一层的更新,层的输入分布会发生变化。这可能会对参数梯度的稳定性产生负面影响,延迟模型收敛。为了减少这种转变,LayerNorm 对求和的输入进行归一化,以固定它们的均值和方差,如下所示:
a ˉ i = a i − μ σ g i , y i = f ( a ˉ i + b i ) , \begin{aligned}\bar{a}_i=\frac{a_i-\mu}{\sigma}g_i,\quad y_i=f\left(\bar{a}_i+b_i\right),\end{aligned} aˉi=σai−μgi,yi=f(aˉi+bi),
其中 a ˉ i \bar{a}_i aˉi是向量 a ˉ ∈ R n \bar{a}\in\mathbb{R}^n aˉ∈Rn的第 i i i个值,作为 α i \alpha_i αi的归一化替代值用于层激活。 g ∈ R n \mathbf{g}\in\mathbb{R}^n g∈Rn是增益参数,用于重新调整标准化求和输入的大小,一开始设置为 1。 μ \mu μ 和 σ 2 \sigma^2 σ2 分别是根据原始求和输入估计的均值和方差统计量。
μ = 1 n ∑ i = 1 n a i , σ = 1 n ∑ i = 1 n ( a i − μ ) 2 . \begin{aligned}\mu=\frac{1}{n}\sum_{i=1}^na_i,\quad\sigma=\sqrt{\frac{1}{n}\sum_{i=1}^n(a_i-\mu)^2}.\end{aligned} μ=n1i=1∑nai,σ=n1i=1∑n(ai−μ)2.
在本文中,假设重新缩放不变性是LayerNorm成功的原因,而不是重新定中心不变性。我们提出了RMSNorm,它只关注重新缩放不变性,并简单地根据均方根(RMS)统计对求和输入进行正则化:
a
ˉ
i
=
a
i
RMS
(
a
)
g
i
,
where RMS
(
a
)
=
1
n
∑
i
=
1
n
a
i
2
.
\begin{aligned}\bar{a}_i=\frac{a_i}{\text{RMS}(\mathbf{a})}g_i,\quad\text{where RMS}(\mathbf{a})=\sqrt{\frac{1}{n}\sum_{i=1}^na_i^2}.\end{aligned}
aˉi=RMS(a)aigi,where RMS(a)=n1i=1∑nai2.
python实现
# root mean square layer normalization
def rln(x, s):
_eps = 1e-5
output = x / tensor.sqrt((x * x).mean(1)[:,None] + _eps)
output = s[None, :] * output
return output
# layer normalization
def ln(x, b, s):
_eps = 1e-5
output = (x - x.mean(1)[:,None]) / tensor.sqrt((x.var(1)[:,None] + _eps))
output = s[None, :] * output + b[None,:]
return output
使用pytorch来写RMSNorm的函数
import torch
import torch.nn as nn
class RMSNorm(nn.Module):
def __init__(self, d, p=-1., eps=1e-8, bias=False):
"""
Root Mean Square Layer Normalization
:param d: model size
:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled)
:param eps: epsilon value, default 1e-8
:param bias: whether use bias term for RMSNorm, disabled by
default because RMSNorm doesn't enforce re-centering invariance.
"""
super(RMSNorm, self).__init__()
self.eps = eps
self.d = d
self.p = p
self.bias = bias
self.scale = nn.Parameter(torch.ones(d))
self.register_parameter("scale", self.scale)
if self.bias:
self.offset = nn.Parameter(torch.zeros(d))
self.register_parameter("offset", self.offset)
def forward(self, x):
if self.p < 0. or self.p > 1.:
norm_x = x.norm(2, dim=-1, keepdim=True)
d_x = self.d
else:
partial_size = int(self.d * self.p)
partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)
norm_x = partial_x.norm(2, dim=-1, keepdim=True)
d_x = partial_size
rms_x = norm_x * d_x ** (-1. / 2)
x_normed = x / (rms_x + self.eps)
if self.bias:
return self.scale * x_normed + self.offset
return self.scale * x_normed