第二届数据安全大赛“数信杯”数据安全大赛 WP

news2025/1/13 6:09:32

1.pyc

使用pyc在线反编译得到python源码:

 #!/usr/bin/env python
 # visit https://tool.lu/pyc/ for more information
 # Version: Python 3.8
 
 import random
 
 
 def encrypt_file(file_path):
     random.seed(114514)
 
 
 # WARNING: Decompyle incomplete
 
 file_path = "./flag"
 encrypt_file(file_path)

然后使用AI分析可得到它对应的解密脚本

 import random
 import os
 
 def decrypt_data(encrypted_data):
     random.seed(114514)
     decrypted_data = bytearray()
     for byte in encrypted_data:
         key = random.randint(0, 128)
         decrypted_data.append(byte ^ key)
     return decrypted_data
 def read_file(file_path, mode='rb'):
     with open(file_path, mode) as file:
         return file.read()
 def write_file(file_path, data, mode='wb'):
     with open(file_path, mode) as file:
         file.write(data)
 def decrypt_file(encrypted_file_path, output_file_path):
     encrypted_data = read_file(encrypted_file_path)
     decrypted_data = decrypt_data(encrypted_data)
     write_file(output_file_path, decrypted_data)
 if __name__=='__main__':
     encrypted_file_path = 'flag.enc'
     output_file_path = 'flag_decrypted.txt'
     decrypt_file(encrypted_file_path, output_file_path)
     #flag{U_R_g00d_at_do1n_pyc}

2.MWatch

提示:数据安全研究员在分析智能设备实时采集的数据时,检测到有一台设备使用者曾出现过某数值过高的情况,请你协助分析该数值最高是多少。flag{md5(数据采集设备名称数据接收设备名称数值)}

多次出现Heart Rate,结合题目描述应该就是找这个,只查看Heart Rate相关

image-20240428205017240

image-20240428205017240

flag{md5(Mi Smart Band 5_Redmi K40_128)}

flag{453d8feda5adb6e7b4d54f71a9ce9e14}

3.BabyRSA

提示:某员工有一个生成素数的初始值,这个算法他跑了很长时间。程序不小心终端,还不小心删了了初始值,还能恢复明文吗

源码:

 #task.py
 #!/usr/bin/env python3
 # -*- coding: utf-8 -*-
 
 from secret import flag,init
 from Crypto.Util.number import *
 from sage.all import *
 from gmpy2 import iroot
 m = bytes_to_long(flag.encode())
 r = getPrime(128)
 
 p = init
 # for i in range(r-1):
 #     p += next_prime(init)
 
 # assert iroot(p,3)[1] == 1
 q = getPrime(12)
 # N = p*q*r
 N = r**4*q
 e = getPrime(17)
 c = pow(m,e,N)
 print(f"r = {r}")
 print(f"e = {e}")
 print(f"c = {c}")
 
 # r = 287040188443069778047400125757341514899
 # e = 96001
 # c = 7385580281056276781497978538020227181009675544528771975750499295104237912389096731847571930273208146186326124578668216163319969575131936068848815308298035625

爆破12比特的素数得到q,然后解密即可

 from Crypto.Util.number import long_to_bytes, inverse
 
 r = 287040188443069778047400125757341514899
 e = 96001
 c = 7385580281056276781497978538020227181009675544528771975750499295104237912389096731847571930273208146186326124578668216163319969575131936068848815308298035625
 
 # Assuming the modulus for the exponentiation should indeed be r**4
 n = r**4
 
 # Compute the modular inverse of e mod φ(n), where φ(n) could be a function of r, like (r-1)*(r**3)
 # We need the correct value of φ(n) for the RSA decryption formula m = c^d mod n, where d = e^(-1) mod φ(n)
 # Here, assuming φ(n) = r^4 - r^3 as a simplification, you might need to adjust this based on actual RSA setup
 phi_n = r**4 - r**3
 d = inverse(e, phi_n)
 
 # Decrypt message
 m = pow(c, d, n)
 
 # Convert number to bytes
 message = long_to_bytes(m)
 print(message)
 #flag{3b0ce326141ea4f6b5bf2f37efbd1b42}

4.Backpack

背包加密,用BKZ算法可以求解到一组基

 #!/usr/bin/env python3
 # -*- coding: utf-8 -*-
 
 from sage.all import *
 from secret import flag
 from Crypto.Util.number import *
 from math import log2
 
 class Knapsack:
     def __init__(self,n,m):
         self.M = []
         self.n = n
         self.m = self.pre(m)
         self.A = 0
         self.B = 0
     def pre(self,m):
         tmp_m = bin(m)[2:]
         t = []
         for tmp in tmp_m:
             t.append(int(tmp))
         return t
     def get_M(self):
         seq = [randint(2**34,2**35) for _ in range(self.n)]
         self.M = seq
     def calc_density(self):
         t = log2(max(self.M))
         d = self.n/t
         print(d)
 
     def enc(self):
         self.get_M()
         self.calc_density()
         C = 0
         for t in range(len(self.m)):
             C += self.m[t] * self.M[t]
         print(f"C = {C}")
         print(f"M = {self.M}")
 if __name__=="__main__":
     m = bytes_to_long(flag.encode())
     n = m.bit_length()
     k = Knapsack(n,m)
     k.enc()
 
 # C = 231282844744
 # M = [27811518167, 19889199464, 19122558731, 19966624823, 25670001067, 30690729665, 23936341812, 31011714749, 30524482330, 21737374993, 17530717152, 19140841231, 33846825616, 17334386491, 28867755886, 29354544582, 21758322019, 27261411361, 31465376167, 26145493792, 27075307455, 33514052206, 25397635665, 21970496142, 30801229475, 22405695620, 18486900933, 27071880304, 17919853256, 18072328152, 21108080920]
 

sagemath中执行:

from Crypto.Util.number import long_to_bytes
 
 C = 231282844744
 M = [27811518167, 19889199464, 19122558731, 19966624823, 25670001067, 30690729665, 
      23936341812, 31011714749, 30524482330, 21737374993, 17530717152, 19140841231, 
      33846825616, 17334386491, 28867755886, 29354544582, 21758322019, 27261411361, 
      31465376167, 26145493792, 27075307455, 33514052206, 25397635665, 21970496142, 
      30801229475, 22405695620, 18486900933, 27071880304, 17919853256, 18072328152, 
      21108080920]
 
 L = block_matrix([[1, matrix(ZZ, M).T], [0, C]]).LLL()
 
 for row in L:
     if row[-1] == 0 and len(set(row[:-1])) == 1:
         # Assuming all elements in the row, except the last one, are the same
         ans = [abs(i) for i in row[:-1]]
         ans = int(''.join(map(str, ans)), 2)
         print(long_to_bytes(ans))

5.定向数据采集

 
import openpyxl
 import requests
 import time
 from urllib.parse import urlencode
 burp0_url = "http://121.40.65.125:23328/submit"
 
 def separate_name_and_id(input_file, output_file):
     wb = openpyxl.load_workbook(input_file)
     ws = wb.active
 
     for row in ws.iter_rows(min_row=1, max_col=1, max_row=ws.max_row, values_only=True):
         if row[0]:
             name, id_number = row[0].split('----') #提取名字和身份证
             print(name, id_number)
             age = 2024-int(id_number[6:10])
             if(int(id_number[10:12])>4):
                 age -= 1
             sexx=u"男"
             burp0_json={"address": "asd", "age": str(age), "ethnicity": "as", "experience": "1", "idcard": id_number, "name": "a", "phonenumber": "12312331233", "position": "as", "sex": sexx}
             sexx2 = u"女"
             burp0_json1={"address": "asd", "age": str(age), "ethnicity": "as", "experience": "1", "idcard": id_number, "name": "a", "phonenumber": "12312331233", "position": "as", "sex": sexx2}
             try:
                 r0=requests.post(burp0_url, json=burp0_json)
                 r1=requests.post(burp0_url, json=burp0_json1)
                 print(r0.request.body)
                 print(r0.text,r1.text)
                 #time.sleep(0.5)
             except requests.exceptions:
                 print("err")
             #time.sleep(2)
             #ws.append([name.strip(), id_number.strip()])
 
     #wb.save(output_file)
     wb.close()
 
 if __name__ == "__main__":
     input_file = "data1.xlsx"
     output_file = "separated_data.xlsx" #没啥用,废弃掉了
     separate_name_and_id(input_file, output_file)

6.weather

审下bundle.js

image-20240428213212351

image-20240428213230335

带参数去访问

Image

7.mysql 清理

提示:

根据要求,现在要从数据库中彻底删除一些用户的数据,请连接提供的mysql容器,删除ctf所有表中,用户id为5142、2123、1169、8623这四个用户的数据。要求彻底清理这些用户,不能在服务器[中找到残留,同时不能改动其他用户数据。当操作成功后,系统会在ctf.flag表中录入flag数据。(mysql ctf用户密码 pswd@123)

 DELETE FROM ShoppingCart WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM TransactionHistory WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM UserLog WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM Wallet WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM User WHERE id in ("5142","2123","1169","8623");

再重建一下表,清掉删除之后的残留数据

 
alter table User engine = innodb;
alter table UserLog engine = innodb;
alter table TransactionHistory engine = innodb;
alter table ShoppingCart engine = innodb;
alter table Orders engine = innodb;

image-20240428213639377

8.幻方

三阶幻方只有八种结果,认准一个多试几次就行

 
import hashlib
 import random
 import string
 
 # Define the character set as alphanumeric characters
 charset = string.ascii_letters + string.digits
 
 while True:
     # Generate a random 4-character string from the charset
     rand_str = ''.join(random.choice(charset) for _ in range(4)) + 'CyhQp8lsgzYjTNUD'
     
     # Calculate the SHA-256 hash of the string
     hash_output = hashlib.sha256(rand_str.encode()).hexdigest()
     
     # Check if the hash matches the target hash
     if hash_output == '11f8af166cc28e24b4646cc300436f4d4bf8e11b2327379331a3eca2d5fc7c0c':
         print(rand_str[:4])  # Print the first 4 characters if a match is found
         break
 '''
 [2, 7, 6, 9, 5, 1, 4, 3, 8]
 [2, 9, 4, 7, 5, 3, 6, 1, 8]
 [4, 3, 8, 9, 5, 1, 2, 7, 6]
 [4, 9, 2, 3, 5, 7, 8, 1, 6]
 [6, 1, 8, 7, 5, 3, 2, 9, 4]
 [6, 7, 2, 1, 5, 9, 8, 3, 4]
 [8, 1, 6, 3, 5, 7, 4, 9, 2]
 [8, 3, 4, 1, 5, 9, 6, 7, 2]
 4 3 8
 9 5 1
 2 7 6
 '''

image-20240428214506459

9.Prime Conundrum

知道了delta可以对leak的那条式子进行二元copper求解s,t,通过hint和s求解p, 算私钥解密即可

 
import itertools
 from tqdm import tqdm
 def small_roots(f, bounds, m=1, d=None):
     if not d:
         d = f.degree()
     R = f.base_ring()
     N = R.cardinality()
     f /= f.coefficients().pop(0)
     f = f.change_ring(ZZ)
     G = Sequence([], f.parent())
     for i in range(m + 1):
         base = N ^ (m - i) * f ^ i
         for shifts in itertools.product(range(d), repeat=f.nvariables()):
             g = base * prod(map(power, f.variables(), shifts))
             G.append(g)
     B, monomials = G.coefficient_matrix()
     monomials = vector(monomials)
     factors = [monomial(*bounds) for monomial in monomials]
     for i, factor in enumerate(factors):
         B.rescale_col(i, factor)
     B = B.dense_matrix().LLL()
     B = B.change_ring(QQ)
     for i, factor in enumerate(factors):
         B.rescale_col(i, 1 / factor)
     H = Sequence([], f.parent().change_ring(QQ))
     for h in filter(None, B * monomials):
         H.append(h)
         I = H.ideal()
         if I.dimension() == -1:
             H.pop()
         elif I.dimension() == 0:
             roots = []
             for root in I.variety(ring=ZZ):
                 root = tuple(R(root[var]) for var in f.variables())
                 roots.append(root)
             return roots
     return []
 P = 91307300383014465303389363075431698588933838431961163766796972428733255940234665671679789435258337578396879726483195947952476118985507696067550566875810703327064257916213956673893327976728584687137639337961422903593701591152074826447530099276756806166361533554689114264018344629905535188048343259754284652017
 Q = 149089411480331249267443825847904508235946280550542428853480950085018092182435890098430254117786823782088885695848943795846175490059759543848516828825072642481794902650586147465149175976488985613001468444893241645390860978312924241181340390543064512602477917112031391367608345501790785857442379515898677467337
 n = 97339579366356507946846401691835843338581994635020856947574389213640653953117584127557153363761256108433474475102197685296591968229050609482457622390855692102761025647645801250282912327521623082583744902369819132264725498938021235699466656447009532567358416017236962637028458839659218745744825556065623673913
 N = 72077628115206161977315177371814064093288033362281459918751639032623658967593542855291047617938064177930014574391486973767462937337649946356572406647109942552336519343063401327708412361664750917582404375485334706345485264831286788789648126355202140531434534406410829696252616051882952860015344370516517084357909896281965899571934196572691
 leak = 45439323369250400352006541741265096780554398472451037280607564706700682873365442581062404781075514235328183754475227917775810587457541607767765455164339314322631781126065808432845447798024685402323868389611285038950397054020330610558058133599416135943335731904873776868614834960217751934513462319743149481906
 c = 31456530156035981140909630437789986968079386074106871160743980387785993275753486380185420818239283975922682050323918081691381897642776414263991442096807392948925867761878299044300335666219533277719472330029607869735373712681522022301659090108633692457216985013550482473362675907949633024047291607542103649091410575340884845190483766424507
 hint = 13318665442465244206832303588726230530847297247590371628366697082014350966833522479782161994817212671730145702818662148370306660550486536176566012104254910
 z = 740476059013240018009340328107
 PR.<x,y>=PolynomialRing(Zmod(n))
 f=P*x + Q*y + z -leak
 ans=small_roots(f,bounds=(2^70,2^70),m=3,d=3)
 ans
 s = 30656796668419630391
 t = 35875762848049841267
 p = hint + s
 q  = n // p 
 assert p*q == n
 e = 65537
 from Crypto.Util.number import *
 d = inverse(e,(p-1)*(q-1)*(z-1))
 m = pow(c,d,n)
 long_to_bytes(int(m))

10.fun

遍历爆破满足条件的x,y然后解密即可

 # from z3 import *
 A = []
 for x in range(101):
     for y in range(101):
         z  = x^y 
         if (x+y)*z == x**2 + y**2:
             if x*y != z:
                 if x != y:
                     A.append([x,y,z])
 from Crypto.Cipher import AES
 import random
 # 与加密时相同的种子,确保生成相同的密钥
 for i in A:
     x,y,z = i
     random.seed(x+y+z)
     key = random.randbytes(16)
     # print(key)
     # 读取加密的数据
     PATH = r"encrypted_flag.bin"
     with open(PATH, "rb") as file_in:
         nonce = file_in.read(16)  # Nonce 的长度为 16 字节
         tag = file_in.read(16)    # Tag 通常与块大小相同,对于 AES 为 16 字节
         ciphertext = file_in.read()  # 读取剩余部分作为密文
     # 解密过程
     # print(nonce)
     # print(tag)
     # print(ciphertext)
     cipher = AES.new(key, AES.MODE_EAX,nonce=nonce)
     try:
         decrypted_text = cipher.decrypt_and_verify(ciphertext, tag)
         print("The flag is:", decrypted_text)
     except:
         pass

11.好大的公钥

boneh and durfee 一把梭

 from libnum import *
 N = 73662176635930217145588251109582598744318418885493494845859692592990304301546996154904097420724904838772056137908521735803973827790665774255932629529776216900362889972771913683024723128622502292694632281143536586986352764727899291750703185204118126673717387089701233154888606074285445820360105604776003690487 
 e = 26083019178473123328452230832076345302834454225396475868531519193551971982955975631443131705619185405190763284436613436828597887376946206551305947183212830810924956452635880343496593901027606468731840531964306285933726727512533644720818081124507069662781291949841231431546394148749720394411454774153995026037 
 c = 46149785989975097887441076951612740430034092652052333486778189200068487460813449057674051203125773261695615434443270333980225346411838188124458064365680435783802887397970067324393852247219619820813993601444322710186223021625645961186730735728928546458428244830359782270698452792224875596683123815246426241726 
 """
 Setting debug to true will display more informations
 about the lattice, the bounds, the vectors...
 """
 debug = False
 """
 Setting strict to true will stop the algorithm (and
 return (-1, -1)) if we don't have a correct
 upperbound on the determinant. Note that this
 doesn't necesseraly mean that no solutions
 will be found since the theoretical upperbound is
 usualy far away from actual results. That is why
 you should probably use `strict = False`
 """
 strict = False
 """
 This is experimental, but has provided remarkable results
 so far. It tries to reduce the lattice as much as it can
 while keeping its efficiency. I see no reason not to use
 this option, but if things don't work, you should try
 disabling it
 """
 helpful_only = True
 dimension_min = 7  # stop removing if lattice reaches that dimension
 ############################################
 # Functions
 ##########################################
 # display stats on helpful vectors
 def helpful_vectors(BB, modulus):
     nothelpful = 0
     for ii in range(BB.dimensions()[0]):
         if BB[ii, ii] >= modulus:
             nothelpful += 1
     print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
 
 # display matrix picture with 0 and X
 def matrix_overview(BB, bound):
     for ii in range(BB.dimensions()[0]):
         a = ('%02d ' % ii)
         for jj in range(BB.dimensions()[1]):
             a += '0' if BB[ii, jj] == 0 else 'X'
             if BB.dimensions()[0] < 60:
                 a += ' '
         if BB[ii, ii] >= bound:
             a += '~'
         print(a)
 # tries to remove unhelpful vectors
 # we start at current = n-1 (last vector)
 def remove_unhelpful(BB, monomials, bound, current):
     # end of our recursive function
     if current == -1 or BB.dimensions()[0] <= dimension_min:
         return BB
     # we start by checking from the end
     for ii in range(current, -1, -1):
         # if it is unhelpful:
         if BB[ii, ii] >= bound:
             affected_vectors = 0
             affected_vector_index = 0
             # let's check if it affects other vectors
             for jj in range(ii + 1, BB.dimensions()[0]):
                 # if another vector is affected:
                 # we increase the count
                 if BB[jj, ii] != 0:
                     affected_vectors += 1
                     affected_vector_index = jj
             # level:0
             # if no other vectors end up affected
             # we remove it
             if affected_vectors == 0:
                 # print("* removing unhelpful vector", ii)
                 BB = BB.delete_columns([ii])
                 BB = BB.delete_rows([ii])
                 monomials.pop(ii)
                 BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                 return BB
             # level:1
             # if just one was affected we check
             # if it is affecting someone else
             elif affected_vectors == 1:
                 affected_deeper = True
                 for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
                     # if it is affecting even one vector
                     # we give up on this one
                     if BB[kk, affected_vector_index] != 0:
                         affected_deeper = False
                 # remove both it if no other vector was affected and
                 # this helpful vector is not helpful enough
                 # compared to our unhelpful one
                 if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(
                         bound - BB[ii, ii]):
                     # print("* removing unhelpful vectors", ii, "and", affected_vector_index)
                     BB = BB.delete_columns([affected_vector_index, ii])
                     BB = BB.delete_rows([affected_vector_index, ii])
                     monomials.pop(affected_vector_index)
                     monomials.pop(ii)
                     BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                     return BB
     # nothing happened
     return BB
 """ 
 Returns:
 * 0,0   if it fails
 * -1,-1 if `strict=true`, and determinant doesn't bound
 * x0,y0 the solutions of `pol`
 """
 def boneh_durfee(pol, modulus, mm, tt, XX, YY):
     """
     Boneh and Durfee revisited by Herrmann and May
     finds a solution if:
     * d < N^delta
     * |x| < e^delta
     * |y| < e^0.5
     whenever delta < 1 - sqrt(2)/2 ~ 0.292
     """
     # substitution (Herrman and May)
     PR.<u,x,y> = PolynomialRing(ZZ)
     Q = PR.quotient(x * y + 1 - u)  # u = xy + 1
     polZ = Q(pol).lift()
     UU = XX * YY + 1
     # x-shifts
     gg = []
     for kk in range(mm + 1):
         for ii in range(mm - kk + 1):
             xshift = x ^ ii * modulus ^ (mm - kk) * polZ(u, x, y) ^ kk
             gg.append(xshift)
     gg.sort()
     # x-shifts list of monomials
     monomials = []
     for polynomial in gg:
         for monomial in polynomial.monomials():
             if monomial not in monomials:
                 monomials.append(monomial)
     monomials.sort()
     # y-shifts (selected by Herrman and May)
     for jj in range(1, tt + 1):
         for kk in range(floor(mm / tt) * jj, mm + 1):
             yshift = y ^ jj * polZ(u, x, y) ^ kk * modulus ^ (mm - kk)
             yshift = Q(yshift).lift()
             gg.append(yshift)  # substitution
     # y-shifts list of monomials
     for jj in range(1, tt + 1):
         for kk in range(floor(mm / tt) * jj, mm + 1):
             monomials.append(u ^ kk * y ^ jj)
     # construct lattice B
     nn = len(monomials)
     BB = Matrix(ZZ, nn)
     for ii in range(nn):
         BB[ii, 0] = gg[ii](0, 0, 0)
         for jj in range(1, ii + 1):
             if monomials[jj] in gg[ii].monomials():
                 BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU, XX, YY)
     # Prototype to reduce the lattice
     if helpful_only:
         # automatically remove
         BB = remove_unhelpful(BB, monomials, modulus ^ mm, nn - 1)
         # reset dimension
         nn = BB.dimensions()[0]
         if nn == 0:
             print("failure")
             return 0, 0
     # check if vectors are helpful
     if debug:
         helpful_vectors(BB, modulus ^ mm)
     # check if determinant is correctly bounded
     det = BB.det()
     bound = modulus ^ (mm * nn)
     if det >= bound:
         # print("We do not have det < bound. Solutions might not be found.")
         # print("Try with highers m and t.")
         if debug:
             diff = (log(det) - log(bound)) / log(2)
             # print("size det(L) - size e^(m*n) = ", floor(diff))
         if strict:
             return -1, -1
     else:
         print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
     # display the lattice basis
     if debug:
         matrix_overview(BB, modulus ^ mm)
     # LLL
     if debug:
         print("optimizing basis of the lattice via LLL, this can take a long time")
     BB = BB.LLL()
     if debug:
         print("LLL is done!")
     # transform vector i & j -> polynomials 1 & 2
     if debug:
         print("looking for independent vectors in the lattice")
     found_polynomials = False
     for pol1_idx in range(nn - 1):
         for pol2_idx in range(pol1_idx + 1, nn):
             # for i and j, create the two polynomials
             PR.<w,z> = PolynomialRing(ZZ)
             pol1 = pol2 = 0
             for jj in range(nn):
                 pol1 += monomials[jj](w * z + 1, w, z) * BB[pol1_idx, jj] / monomials[jj](UU, XX, YY)
                 pol2 += monomials[jj](w * z + 1, w, z) * BB[pol2_idx, jj] / monomials[jj](UU, XX, YY)
             # resultant
             PR.<q> = PolynomialRing(ZZ)
             rr = pol1.resultant(pol2)
             # are these good polynomials?
             if rr.is_zero() or rr.monomials() == [1]:
                 continue
             else:
                 # print("found them, using vectors", pol1_idx, "and", pol2_idx)
                 found_polynomials = True
                 break
         if found_polynomials:
             break
     if not found_polynomials:
         # print("no independant vectors could be found. This should very rarely happen...")
         return 0, 0
     rr = rr(q, q)
     # solutions
     soly = rr.roots()
     if len(soly) == 0:
         # print("Your prediction (delta) is too small")
         return 0, 0
     soly = soly[0][0]
     ss = pol1(q, soly)
     solx = ss.roots()[0][0]
     #
     return solx, soly
 delta = .271  # this means that d < N^delta
 m = 8  # size of the lattice (bigger the better/slower)
 t = int((1 - 2 * delta) * m)  # optimization from Herrmann and May
 X = 2 * floor(N ^ delta)  # this _might_ be too much
 Y = floor(N ^ (1 / 2))  # correct if p, q are ~ same size
 P.<x,y> = PolynomialRing(ZZ)
 A = int((N + 1) / 2)
 pol = 1 + x * (A + y)
 solx, soly = boneh_durfee(pol, e, m, t, X, Y)
 d = int(pol(solx, soly) / e)
 print(d)
 m = power_mod(c, d, N)
 print(n2s(int(m)))

12.Notebook

复制文本到浏览器检索,发现有200C,所以直接零宽字符,用Cyberchef转换为Escape Unicode,发现大量出现了以下零宽字符

u202C\u200B\u2062\uFEFF最后找到了

https://lazzzaro.github.io/2020/05/24/misc-%E9%9B%B6%E5%AE%BD%E5%BA%A6%E5%AD%97%E7%AC%A6%E9%9A%90%E5%86%99/index.html

发现330k有自定义码表的功能

http://330k.github.io/misc_tools/unicode_steganography.html

最后发现MACOSX_里面里面其实hint了330k.github.io。

https://www.mzy0.com/ctftools/zerowidth1/

也可以处理。

选中需要的编码之后即可解析,解析后如下:

K|2+YG3-hfl|&_U8检索一整段之后没有什么信息,放入随波逐流里面发现该编码可以被base92解码解码后可知泄露源。

image-20240414192310831

wangdalei0527然后找了半天flag提交格式结果发现只用提交wangdalei就行,0527猜测是手机尾号

flag{wangdalei}

13.UnsetData

发现是一个类似于内存镜像的东西,使用R-studio进行恢复找到了data.jpg,发现左上角有东西,有隐隐约约的字符,使用盲水印发现flag,然后调十几次参数找到相对清晰的图片之后抄10分钟flag即可得

img

image-20240414184342639

flag{0531d7d9-65fb-49ae-87c1-639fff783338}

14.RWZIP

发现该压缩包数据校验不通过,说明包体被修改过,修改前发现压缩加密格式为ZipCrypto没找到其他信息,使用passware toolkit爆破,可得压缩包密码为114514,再观察下包体发现他被ZipCrypto加密后却不需要输入密码,将加密为从08改为09正常输入密码即可解压解压后发现采用了特殊的字符集,目测是将左右进行翻转替换后可得flag

 ʇlɒϱ{85ɘdɒʇ8245754b9ɘd09045087ʇɘ28392}
 flag{85ebaf8245754d9eb09045087fe28392}

15.USBHacker

wireshark打开后USBHID长度为16,知道该流量为键盘流量

过滤Source 1.5.1之后,导出json,

 import json
 datainput = open('USB3.json', "r", encoding="utf-8")
 output = open("USB3.txt", "w",encoding="utf-8")
 d = json.load(datainput)
 for i in d:
     print(i["_source"]["layers"]["usbhid.data"])
     output.write(i["_source"]["layers"]["usbhid.data"]+'\n')

然后再进行解析

 
normalKeys = {
     "04":"a", "05":"b", "06":"c", "07":"d", "08":"e",
     "09":"f", "0a":"g", "0b":"h", "0c":"i", "0d":"j",
      "0e":"k", "0f":"l", "10":"m", "11":"n", "12":"o",
       "13":"p", "14":"q", "15":"r", "16":"s", "17":"t",
        "18":"u", "19":"v", "1a":"w", "1b":"x", "1c":"y",
         "1d":"z","1e":"1", "1f":"2", "20":"3", "21":"4",
          "22":"5", "23":"6","24":"7","25":"8","26":"9",
          "27":"0","28":"<RET>","29":"<ESC>","2a":"<DEL>", "2b":"\t",
          "2c":"<SPACE>","2d":"-","2e":"=","2f":"[","30":"]","31":"\\",
          "32":"<NON>","33":";","34":"'","35":"<GA>","36":",","37":".",
          "38":"/","39":"<CAP>","3a":"<F1>","3b":"<F2>", "3c":"<F3>","3d":"<F4>",
          "3e":"<F5>","3f":"<F6>","40":"<F7>","41":"<F8>","42":"<F9>","43":"<F10>",
          "44":"<F11>","45":"<F12>"}
 shiftKeys = {
     "04":"A", "05":"B", "06":"C", "07":"D", "08":"E",
      "09":"F", "0a":"G", "0b":"H", "0c":"I", "0d":"J",
       "0e":"K", "0f":"L", "10":"M", "11":"N", "12":"O",
        "13":"P", "14":"Q", "15":"R", "16":"S", "17":"T",
         "18":"U", "19":"V", "1a":"W", "1b":"X", "1c":"Y",
          "1d":"Z","1e":"!", "1f":"@", "20":"#", "21":"$",
           "22":"%", "23":"^","24":"&","25":"*","26":"(","27":")",
           "28":"<RET>","29":"<ESC>","2a":"<DEL>", "2b":"\t","2c":"<SPACE>",
           "2d":"_","2e":"+","2f":"{","30":"}","31":"|","32":"<NON>","33":"\"",
           "34":":","35":"<GA>","36":"<","37":">","38":"?","39":"<CAP>","3a":"<F1>",
           "3b":"<F2>", "3c":"<F3>","3d":"<F4>","3e":"<F5>","3f":"<F6>","40":"<F7>",
           "41":"<F8>","42":"<F9>","43":"<F10>","44":"<F11>","45":"<F12>"}
 output = []
 keys = open('usb2.txt','r')
 for line in keys:
     try:
         if line[0]!='0' or (line[1]!='0' and line[1]!='2') or line[3]!='0' or line[4]!='0' or line[9]!='0' or line[10]!='0' or line[12]!='0' or line[13]!='0' or line[15]!='0' or line[16]!='0' or line[18]!='0' or line[19]!='0' or line[21]!='0' or line[22]!='0' or line[6:8]=="00":
              continue
         if line[6:8] in normalKeys.keys():
             output += [[normalKeys[line[6:8]]],[shiftKeys[line[6:8]]]][line[1]=='2']
         else:
             output += ['[unknown]']
     except:
         pass
 keys.close()
 flag=0
 print("".join(output))
 for i in range(len(output)):
     try:
         a=output.index('<DEL>')
         del output[a]
         del output[a-1]
     except:
         pass
 for i in range(len(output)):
     try:
         if output[i]=="<CAP>":
             flag+=1
             output.pop(i)
             if flag==2:
                 flag=0
         if flag!=0:
             output[i]=output[i].upper()
     except:
         pass
 print ('output :' + "".join(output))

发现是身份证号,缺失校验位,计算得出校验位为3,md5后即为flag

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1938189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

生成式人工智能落地校园与课堂的15个场景

生成式人工智能正在重塑教育行业&#xff0c;为传统教学模式带来了革命性的变化。随着AI的不断演进&#xff0c;更多令人兴奋的应用场景将逐一显现&#xff0c;为学生提供更加丰富和多元的学习体验。 尽管AI在教学中的应用越来越广泛&#xff0c;但教师们也不必担心会被完全替代…

MySQL:在 SELECT 查询中过滤数据

SELECT … WHERE … 需要有条件的从数据表中查询数据&#xff0c;可以使用 WHERE 关键字来指定查询条件 SELECT select_list FROM tablename WHEREsearch_condition;查询条件: 带 比较运算符 和 逻辑(布尔)运算符 的查询条件 AND&#xff1a;记录满足所有查询条件时&#xf…

win11在虚拟环境安装PyTorch的教程

一、前言 pytorch直接安装到anaconda的base上面不是什么好习惯。我的亲身经历是&#xff0c;将pytorch和其它软件如openCV&#xff0c;openGL等混装&#xff0c;然后互相冲撞&#xff0c;使得图像方面的软件不能工作。本篇我们讲述将pytorch独立安装到可靠、干净的虚拟环境中。…

VSCode部署Pytorch机器学习框架使用Anaconda(Window版)

目录 1. 配置Anaconda1.1下载安装包1. Anaconda官网下载2, 安装Anaconda 1.2 创建虚拟环境1.3 常用命令Conda 命令调试和日常维护 1.4 可能遇到的问题执行上述步骤后虚拟环境仍在C盘 2. 配置cuda2.1 查看显卡支持的cuda版本2.2 下载对应cuda版本2.3 下载对应的pytorch可能出现的…

Yolo-World网络模型结构及原理分析(三)——RepVL-PAN

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言1. 网络结构2. 特征融合3. 文本引导&#xff08;Text-guided&#xff09;4. 图像池化注意力&#xff08;Image-Pooling Attention&#xff09;5. 区域文本匹配&…

直方图的最大长方形面积

前提知识&#xff1a;单调栈基础题-CSDN博客 子数组的最大值-CSDN博客 题目描述&#xff1a; 给定一个非负数&#xff08;0和正数&#xff09;&#xff0c;代表直方图&#xff0c;返回直方图的最大长方形面积&#xff0c;比如&#xff0c;arr {3, 2, 4, 2, 5}&#xff0c…

关于Qt部署CMake导致“Failed to set working directory to“的问题

使用qt部署Cmake项目时&#xff0c;遇到"Failed to set working directory to"的错误&#xff08;还没编译&#xff09;&#xff0c;然后查看部署信息发现&#xff1a; “The CXX compiler identification is unknown”、“CMake Error at xxxx/CMakeTestCXXCompiler…

【计算机视觉】siamfc论文复现

什么是目标跟踪 使用视频序列第一帧的图像(包括bounding box的位置)&#xff0c;来找出目标出现在后序帧位置的一种方法。 什么是孪生网络结构 孪生网络结构其思想是将一个训练样本(已知类别)和一个测试样本(未知类别)输入到两个CNN(这两个CNN往往是权值共享的)中&#xff0…

【Python】PyMySQL 和 mysql-connector-python 的比较:差异详解

文章目录 1. PyMySQL2. mysql-connector-python3. 相同之处4. 不同之处性能功能特性兼容性错误处理 5. 性能比较6. 兼容性和依赖性7. 社区支持和文档8. 使用示例9. 总结 MySQL 是全球最流行的开源数据库之一&#xff0c;而 Python 作为一种广泛应用的编程语言&#xff0c;提供了…

【字少图多剖析微服务】深入理解Eureka核心原理

深入理解Eureka核心原理 Eureka整体设计Eureka服务端启动Eureka三级缓存Eureka客户端启动 Eureka整体设计 Eureka是一个经典的注册中心&#xff0c;通过http接收客户端的服务发现和服务注册请求&#xff0c;使用内存注册表保存客户端注册上来的实例信息。 Eureka服务端接收的…

Polaris系列-07.启动分析六

本篇分析 配置中心模块 启动流程&#xff1a; 先看启动配置参数&#xff1a; 进入方法&#xff1a; 先看看配置中心服务数据模型&#xff1a;初始化也是围绕着下面各个属性赋值... // Server 配置中心核心服务 type Server struct {cfg *Configstorage store.Sto…

51单片机13(动态数码管实验)

一、数码管动态显示原理 1、动态显示是利用减少段选线&#xff0c;分开位选线&#xff0c;利用位选线不同时选择通断&#xff0c;改变段选数据来实现的。 &#xff08;1&#xff09;多位数码管依然可以进行静态的一个显示&#xff0c;那么在前面我们介绍静态数码管的时候&…

VTK源码分析:Type System

作为一款开源跨平台的数据可视化代码库&#xff0c;VTK以其清晰的流水线工作方式、丰富的后处理算法、异种渲染/交互方式&#xff0c;而被众多CAx软件选作后处理实施方案。而异种渲染/交互方式的实现&#xff0c;主要是倚重于VTK的类型系统&#xff0c;因此&#xff0c;有必要对…

visio保存一部分图/emf图片打开很模糊/emf插入到word或ppt中很模糊

本文主要解决三个问题 visio保存一部分图 需求描述&#xff1a;在一个visio文件中画了很多个图&#xff0c;但我只想把其中一部分保存成某种图片格式&#xff0c;比如jpg emf png之类的&#xff0c;以便做后续的处理。 方法&#xff1a;超级容易。 选中希望保存的这部分图&…

免费【2024】springboot 爱看漫画小程序的设计与实现

博主介绍&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HTML、Jsp、PHP、Nodejs、Python、爬虫、数据可视化…

分布式搜索之Elasticsearch入门

Elasticsearch 是什么 Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎&#xff0c;能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心&#xff0c;它集中存储您的数据&#xff0c;帮助您发现意料之中以及意料之外的情况。 Elastic Stack 又是什么呢&a…

使用docker swarm搭建ruoyi集群环境

整体目标 项目背景 领导给到了我一个客户&#xff0c;客户商业模式为成本制作&#xff0c;成本核算。其中涉及到大量涉密数据&#xff0c;且与我们现有产品几乎没有兼容点&#xff08;我们是一套低代码的框架&#xff0c;客户有很多业务二开&#xff09; 测试环境给到了我6台…

黑马微服务拆分2 (路由 登录 配置)

会利用微服务网关做请求路由 会利用微服务网关做登录身份校验 会利用Nacos实现统一配置管理 会利用Nacos实现配置热更新 今天粗略的完成了黑马笔记里边的代码实现 其实本身黑马商城的源码就写的逻辑有漏洞&#xff0c;加上对业务没有仔细分析 导致出现的bug调试了很久 这…

如何判断自己的数据格式适合使用json还是Excel的形式存入neo4j数据库

判断自己的数据格式适合使用JSON还是Excel的形式存入Neo4j数据库&#xff0c;主要取决于数据的复杂性、规模、结构、以及你或你的团队对这两种格式的熟悉程度。以下是一些关键因素&#xff0c;可以帮助你做出决策&#xff1a; 数据的复杂性&#xff1a; 如果你的数据包含大量的…

【Zynq UltraScale+ RFSoC】~~~

Zynq UltraScale RFSoC 系列为 5G 无线和射频级模拟应用引入了颠覆性的集成和架构突破&#xff0c;可直接支持整个 5G sub-6GHz 频段。这个创新系列现已开始批量生产。此设计演示展示了多通道&#xff08;8T8R 或 16T16R&#xff09;Zynq UltraScale RFSoC 评估工具工具工具&am…