昇思学习打卡-23-生成式/CycleGAN图像风格迁移互换

news2024/9/19 7:24:04

文章目录

  • 模型介绍
  • 网络结构
  • 数据集可视化
  • 网络的其他细节
  • 模型推理

模型介绍

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。

该模型一个重要应用领域是域迁移(Domain Adaptation),即图像风格迁移。在 CycleGAN 之前,就已经有了域迁移模型,比如 Pix2Pix昇思学习打卡-19-生成式/Pix2Pix实现图像转换 ,但是 Pix2Pix 要求训练数据必须是成对的,而现实生活中,要找到两个域(画风)中成对出现的图片是相当困难的,因此 CycleGAN 诞生了,它只需要两种域的数据,而不需要他们有严格对应关系,是一种新的无监督的图像迁移网络。

网络结构

CycleGAN 网络本质上是由两个镜像对称的 GAN 网络组成,下面这个例子以苹果和橘子为例介绍,讲解的很形象:
下图中𝑋可以理解为苹果,𝑌为橘子;𝐺为将苹果生成橘子风格的生成器,𝐹为将橘子生成的苹果风格的生成器,𝐷𝑋和𝐷𝑌为其相应判别器。模型最终能够输出两个模型的权重,分别将两种图像的风格进行彼此迁移,生成新的图像。
在这里插入图片描述
该网络需要多个损失函数,在所有损失里面循环一致损失(Cycle Consistency Loss)是最重要的,可以这样理解:
下图中苹果图片𝑥经过生成器𝐺得到伪橘子𝑌̂,然后将伪橘子𝑌̂结果送进生成器 𝐹又产生苹果风格的结果 𝑥̂ ,最后将生成的苹果风格结果 𝑥̂ 与原苹果图片 𝑥 一起计算出循环一致损失,反之亦然。循环损失捕捉了这样的直觉,即如果我们从一个域转换到另一个域,然后再转换回来,我们应该到达我们开始的地方。
在这里插入图片描述
循环一致损失能够保证重建图像与输入图像紧密匹配。

数据集可视化

import numpy as np
import matplotlib.pyplot as plt

mean = 0.5 * 255
std = 0.5 * 255

plt.figure(figsize=(12, 5), dpi=60)
for i, data in enumerate(dataset.create_dict_iterator()):
    if i < 5:
        show_images_a = data["image_A"].asnumpy()
        show_images_b = data["image_B"].asnumpy()

        plt.subplot(2, 5, i+1)
        show_images_a = (show_images_a[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_a)
        plt.axis("off")

        plt.subplot(2, 5, i+6)
        show_images_b = (show_images_b[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_b)
        plt.axis("off")
    else:
        break
plt.show()

在这里插入图片描述

网络的其他细节

  • 构建生成器时,此模型使用ResNet 模型的结构

  • 构建判别器,判别器其实是一个二分类网络模型,输出判定该图像为真实图的概率。

  • 定义优化器和损失函数,优化器使用Adam,关于损失函数,主要关注循环一致损失函数

  • 前向计算使用生成器生成图像的历史数据而不是生成器生成的最新图像数据来更新鉴别器。

  • 计算梯度和反向传播,其中梯度计算也是分开不同的模型来进行的

  • 最后是模型训练,模型训练训练分为两个主要部分:训练判别器和训练生成器,在前文的判别器损失函数中,论文采用了最小二乘损失代替负对数似然目标。

    • 训练判别器:训练判别器的目的是最大程度地提高判别图像真伪的概率。按照论文的方法需要训练判别器来最小化 𝐸𝑦−𝑝𝑑𝑎𝑡𝑎(𝑦)[(𝐷(𝑦)−1)2];
    • 训练生成器:如 CycleGAN 论文所述,我们希望通过最小化 𝐸𝑥−𝑝𝑑𝑎𝑡𝑎(𝑥)[(𝐷(𝐺(𝑥)−1)2]来训练生成器,以产生更好的虚假图像。

模型推理

%%time
import os
from PIL import Image
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import load_checkpoint, load_param_into_net

# 加载权重文件
def load_ckpt(net, ckpt_dir):
    param_GA = load_checkpoint(ckpt_dir)
    load_param_into_net(net, param_GA)

g_a_ckpt = './CycleGAN_apple2orange/ckpt/g_a.ckpt'
g_b_ckpt = './CycleGAN_apple2orange/ckpt/g_b.ckpt'

load_ckpt(net_rg_a, g_a_ckpt)
load_ckpt(net_rg_b, g_b_ckpt)

# 图片推理
fig = plt.figure(figsize=(11, 2.5), dpi=100)
def eval_data(dir_path, net, a):

    def read_img():
        for dir in os.listdir(dir_path):
            path = os.path.join(dir_path, dir)
            img = Image.open(path).convert('RGB')
            yield img, dir

    dataset = ds.GeneratorDataset(read_img, column_names=["image", "image_name"])
    trans = [vision.Resize((256, 256)), vision.Normalize(mean=[0.5 * 255] * 3, std=[0.5 * 255] * 3), vision.HWC2CHW()]
    dataset = dataset.map(operations=trans, input_columns=["image"])
    dataset = dataset.batch(1)
    for i, data in enumerate(dataset.create_dict_iterator()):
        img = data["image"]
        fake = net(img)
        fake = (fake[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))
        img = (img[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))

        fig.add_subplot(2, 8, i+1+a)
        plt.axis("off")
        plt.imshow(img.asnumpy())

        fig.add_subplot(2, 8, i+9+a)
        plt.axis("off")
        plt.imshow(fake.asnumpy())

eval_data('./CycleGAN_apple2orange/predict/apple', net_rg_a, 0)
eval_data('./CycleGAN_apple2orange/predict/orange', net_rg_b, 4)
plt.show()

推理结果如下:
在这里插入图片描述
此章节学习到此结束,感谢昇思平台。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1937248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VMware中Ubuntu磁盘空间的清理

最近发现Ubuntu占用空间过大&#xff0c;在网上找了一些方法&#xff0c;在这里总结一下。 1.删除快照 把不需要的快照删除&#xff0c;但要注意删除快照可能会影响到后续的快照链。每个快照依赖于前面的快照。如果删除一个中间快照&#xff0c;虚拟机可能无法找到完整的差异…

谷粒商城实战笔记-36-前端基础-Vue-介绍HelloWorld

文章目录 一&#xff0c;MVVM 思想直接操作DOM的示例使用Vue和MVVM的示例MVVM与DOM操作的主要区别 二&#xff0c;Vue 简介三&#xff0c;第一个Vue项目1 新建项目2 安装依赖3 使用Vue 这一节的主要内容是演示Vue的简单使用。 一&#xff0c;MVVM 思想 M&#xff1a;即 Model…

基础vrrp(虚拟路由冗余协议)

一、VRRP 虚拟路由冗余协议 比如交换机上联两个路由器&#xff0c;由两个路由虚拟出一台设备设置终端设备的网关地址&#xff0c;两台物理路由的关系是主从关系&#xff0c;可以设置自动抢占。终端设备的网关是虚拟设备的ip地址&#xff0c;这样&#xff0c;如果有一台路由设备…

c++模板初识

目录 一、 泛型编程 二、 函数模板 1.函数模板概念 2.函数模板格式 3.函数模板的原理 4.函数模板的实例化 1. 隐式实例化&#xff1a;让编译器根据实参推演模板参数的实际类型 2.显式实例化&#xff1a;在函数名后的<>中指定模板参数的实际类型 5.模板参数的…

万物互联时代,手机丢了我们该怎么办?

万物互联时代&#xff0c;我们的手机丢了该怎么办&#xff1f;全身家当都在一部手机里&#xff0c;这个时候我们更要冷静&#xff0c;然后先尝试着打电话、发短信、定位找手机。 如果实在找不到的话&#xff0c;先借个电话号码把以下四件事给做好&#xff1a; ①挂失手机号&am…

《昇思25天学习打卡营第21天|Pix2Pix实现图像转换》

Pix2Pix 是一种图像转换模型&#xff0c;使用条件生成对抗网络&#xff08;Conditional Generative Adversarial Networks&#xff0c;cGANs&#xff09;实现图像到图像的转换。它主要由生成器&#xff08;Generator&#xff09;和判别器&#xff08;Discriminator&#xff09;…

【UE5.1】NPC人工智能——04 NPC巡逻

效果 步骤 一、准备行为树和黑板 1. 对我们之前创建的AI控制器创建一个子蓝图类 这里命名为“BP_NPC_AIController_Lion”&#xff0c;表示专门用于控制狮子的AI控制器 2. 打开狮子蓝图“Character_Lion” 在类默认值中将“AI控制器类”修改为“BP_NPC_AIController_Lion” 3…

数据编织 Data Fabric:解决“数据孤岛”的新思路

一个不争的事实是&#xff0c;企业内部数据孤岛的形成&#xff0c;根因在于业务发展的复杂性与技术迭代的快速性导致。具体而言&#xff0c;随着企业业务快速增长&#xff0c;如新生产线的引入或外部公司的并购&#xff0c;这些活动往往伴随着新系统上线与独立数据体系的融入&a…

AI算法24-决策树C4.5算法

目录 决策树C4.5算法概述 决策树C4.5算法简介 决策树C4.5算法发展历史 决策树C4.5算法原理 信息熵&#xff08;Information Entropy&#xff09; 信息增益&#xff08;Information Gain&#xff09; 信息增益比&#xff08;Gain Ratio&#xff09; 决策树C4.5算法改进 …

产品经理-工作中5大类技术名词解析(19)

在产品经理与开发的团队协作中,如果自己知道一些专业术语,对业务的开展是有帮助的&#xff0c;很多时候,在沟通过程当中,就是因为自己不懂,所以才不知道怎么去做,想要什么样的结果 在力所能及的情况下,平时,多了解一些专业术语,是有好处的 数据结构 数据结构是技术人员将数据进…

LeetCode——被管绕的区域

题目描述 给你一个 m x n 的矩阵 board &#xff0c;由若干字符 X 和 O 组成&#xff0c;捕获 所有 被围绕的区域&#xff1a; 连接&#xff1a;一个单元格与水平或垂直方向上相邻的单元格连接。区域&#xff1a;连接所有 O 的单元格来形成一个区域。围绕&#xff1a;如果您可…

数据库系统概论:事务与并发一致性问题

随着网络应用的普及&#xff0c;数据库并发问题变得越来越重要。数据库并发指的是多个用户或进程同时访问和操作数据库的能力。它是数据库系统性能优化的重要方面&#xff0c;旨在提高系统的吞吐量和响应时间&#xff0c;以满足多用户同时访问数据库的需求。然而&#xff0c;这…

GPT-4o模型开通使用教学,解除使用限制【Outlook版】

OpenAI的GPT-4o模型免费用户都可以使用&#xff0c;但是遗憾的是每三小时可以使用十次问答。 但是还是有好多同学连使用都不会&#xff0c;今天这篇文章教会你如何使用并解除使用限制。 大家可以使用Outlook邮箱。 打开outlook官网选择中间获得免费账户。 ​ 在接下来的邮…

AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理

AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理 目录 AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理 一、简单介绍 二、零样本学习 (Zero-shot Learning) 和少样本学习…

【Qt】常用控件

文章目录 QWidgetenabledgeometrywindow framewindowTitlewindowIconqrc资源管理windowOpacitycursorfonttoolTipfocusPolicystyleSheet 按钮类PushButtonRadioButtonCheckBoxSignals 显示类LabelLCDNumberProgressBarCalendar 输入类LineEditTextEditComboBoxSpinBoxDateTimeE…

55 、mysql的存储引擎、备份恢复以及日志备份、恢复

一、数据库的存储引擎&#xff1a; 1.1、存储引擎的概念 概念&#xff1a;存储引擎&#xff0c;就是一种数据库存储数据的机制&#xff0c;索引的机制&#xff0c;索引的技巧&#xff0c;锁定水平。 存储的方式和存储的格式。 存储引擎也属于mysql当中的组件&#xff0c;实…

Python游戏开发之制作捕鱼达人游戏-附源码

制作一个简单的“捕鱼达人”游戏可以使用Python结合图形界面库&#xff0c;比如Pygame。Pygame是一个流行的Python库&#xff0c;用于创建视频游戏&#xff0c;它提供了图形、声音等多媒体的支持。以下是一个基础的“捕鱼达人”游戏框架&#xff0c;包括玩家控制一个炮台来射击…

小程序博客搭建分享,纯微信小程序原生实现

本项目代码已开源&#xff0c;具体见&#xff1a; 前端工程&#xff1a;vue3-ts-blog-frontend 后端工程&#xff1a;express-blog-backend 小程序源码&#xff1a;blog-weapp 数据库初始化脚本&#xff1a;关注公众号程序员白彬&#xff0c;回复关键字“博客数据库脚本”&…

【ML练习】决策树

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、决策树算法概述 二、代码实现 代码目标&#xff1a;我们希望通过鸢尾花数据&#xff0c;训练一个决策树模型&#xff0c;之后应用该模型&#xff0c;可以…

新的铸造厂通过 PROFIBUS 技术实现完全自动化

钢铁生产商某钢以其在厚钢板类别中极高的产品质量而闻名。其原材料&#xff08;板坯连铸机&#xff09;在钢铁厂本地生产&#xff0c;该厂最近新建了一座垂直连铸厂。该项目的一个主要目标是从一开始就完全自动化这座新工厂和整个铸造过程&#xff0c;以高成本效率实现最佳产品…