NLP教程:1 词袋模型和TFIDF模型

news2024/11/14 13:46:25

文章目录

  • 词袋模型
  • TF-IDF模型
  • 词汇表模型


词袋模型

  文本特征提取有两个非常重要的模型:

  • 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。

  • 词袋模型:在词集的基础上如果一个单词在文档中出现不止一次,统计其出现的次数(频数)。

  两者本质上的区别,词袋是在词集的基础上增加了频率的维度,词集只关注有和没有,词袋还要关注有几个。
  假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
  导入相关的函数库:

from sklearn.feature_extraction.text import CountVectorizer

  实例化分词对象:

vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                    
    CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',
            dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',
            lowercase=True, max_df=1.0, max_features=None, min_df=1,
            ngram_range=(1, 1), preprocessor=None, stop_words=None,
            strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',
            tokenizer=None, vocabulary=None)

  将文本进行词袋处理:

import jieba
from sklearn.feature_extraction.text import CountVectorizer

txt="""
变压器停、送电操作时,应先将该变压器中性点接地,对于调度要求不接地的变压器,在投入系统后应拉开中性点接地刀闸。
 在中性点直接接地系统中,运行中的变压器中性点接地闸刀需倒换时,应先合上另一台主变压器的中性点接地闸刀,再拉开原来变压器的中性点接地闸刀。运行中的变压器中性点接地方式、中性点倒换操作的原则是保证该网络不失去接地点,采用先合后拉的操作方法。
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
words = jieba.lcut(txt)     # 使用精确模式对文本进行分词
vectorizer = CountVectorizer(min_df=1)#min_df 默认为1(int),表示“忽略少于1个文档中出现的术语”,因此,默认设置不会忽略任何术语,该参数不起作用

X = vectorizer.fit_transform(words)

#获取对应的特征名称:
print(vectorizer.get_feature_names())#feature_names可能不等于words
#词袋化
print(X.toarray())

词袋类似array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]…)

  但是如何可以使用现有的词袋的特征,对其他文本进行特征提取呢?我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

  针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

  CountVectorize函数比较重要的几个参数为:

  • decode_error,处理解码失败的方式,分为‘strict’、‘ignore’、‘replace’三种方式。
  • strip_accents,在预处理步骤中移除重音的方式。
  • max_features,词袋特征个数的最大值。
  • stop_words,判断word结束的方式。
  • max_df,df最大值。
  • min_df,df最小值 。
  • binary,默认为False,当与TF-IDF结合使用时需要设置为True。
    本例中处理的数据集均为英文,所以针对解码失败直接忽略,使用ignore方式,stop_words的方式使用english,strip_accents方式为ascii方式。

TF-IDF模型

  文本处理领域还有一种特征提取方法,叫做TF-IDF模型(term frequency–inverse document frequency,词频与逆向文件频率)。TF-IDF是一种统计方法,用以评估某一字词对于一个文件集或一个语料库的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF(Term Frequency,词频),词频高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF * IDF。TF表示词条在文档d中出现的频率。IDF(inverse document frequency,逆向文件频率)的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其他类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其他类文档。

示例
文档

中文停用词见
停用词

import jieba
import pandas as pd
import re
from sklearn.feature_extraction.text import CountVectorizer#词袋
from sklearn.feature_extraction.text import TfidfTransformer#tfidf


file=pd.read_excel("文档.xls")

# 定义删除除字母,数字,汉字以外的所有符号的函数
def remove_punctuation(line):
    line = str(line)
    if line.strip() == '':
        return ''
    rule = re.compile(u"[^a-zA-Z0-9\u4E00-\u9FA5]")
    line = rule.sub('', line)
    return line

#停用词
def stopwordslist(filepath):
    try:
        stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
    except:
        stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]

    return stopwords


# 加载停用词
stopwords = stopwordslist("停用词.txt")

#去除标点符号
file['clean_review']=file['文档'].apply(remove_punctuation)
# 去除停用词
file['cut_review'] = file['clean_review'].apply(lambda x: " ".join([w for w in list(jieba.cut(x)) if w not in stopwords]))

#词袋计数
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(file['cut_review'])

#tf-idf
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

X_train_tfidf
(0, 123) 0.08779682150216786 表示第1篇文档词袋中第123个单词的tdidf为0.087

X_train_tfidf.toarray()

词汇表模型

词袋模型可以很好的表现文本由哪些单词组成,但是却无法表达出单词之间的前后关系,于是人们借鉴了词袋模型的思想,使用生成的词汇表对原有句子按照单词逐个进行编码。TensorFlow默认支持了这种模型:

tf.contrib.learn.preprocessing.VocabularyProcessor (
                                              max_document_length,    
                                              min_frequency=0,
                                              vocabulary=None,
                                              tokenizer_fn=None)

其中各个参数的含义为:

  • max_document_length:,文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充。
  • min_frequency,词频的最小值,出现次数小于最小词频则不会被收录到词表中。
  • vocabulary,CategoricalVocabulary 对象。
  • tokenizer_fn,分词函数。

假设有如下句子需要处理:

x_text =[
    'i love you',
    'me too'
]

基于以上句子生成词汇表,并对’i me too’这句话进行编码:

 vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
    vocab_processor.fit(x_text)
    print next(vocab_processor.transform(['i me too'])).tolist()
    x = np.array(list(vocab_processor.fit_transform(x_text)))
    print x

运行程序,x_text使用词汇表编码后的数据为:
[[1 2 3 0]
[4 5 0 0]]
'i me too’这句话编码的结果为:
[1, 4, 5, 0]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1934897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp form表单校验

公司的一个老项目&#xff0c;又要重新上架&#xff0c;uniapp一套代码&#xff0c;打包生成iOS端发布到App Store&#xff0c;安卓端发布到腾讯应用宝、OPPO、小米、华为、vivo&#xff0c;安卓各大应用市场上架要求不一样&#xff0c;可真麻烦啊 光一个表单校验&#xff0c;…

19-1 LLM之野望 1 – 微软打开1-bit LLM时代

让我们面对现实吧&#xff0c;数字不会说谎。 尽管市场因人工智能而上涨&#xff0c;但其效应显然尚未转化为价值&#xff0c;因为只有不到4&#xff05;的公司使用人工智能来生产商品和服务。 更糟糕的是&#xff0c;虽然一些大公司确实在拥抱人工智能&#xff0c;但高不可攀…

Kafka Producer之数据重复和乱序问题

文章目录 1. 数据重复2. 数据乱序 为了可靠性&#xff0c;Kafka有消息重试机制&#xff0c;但是同时也带来了2大问题 1. 数据重复 消息发送到broker后&#xff0c;broker记录消息数据到log中&#xff0c;但是由于网络问题&#xff0c;producer没有收到acks&#xff0c;于是再次…

阿里云 申请免费ssl 证书

1控制台--数字证书管理服务 2 创建所需域名证书

Linux网络——套接字与UdpServer

目录 一、socket 编程接口 1.1 sockaddr 结构 1.2 socket 常见API 二、封装 InetAddr 三、网络字节序 四、封装通用 UdpServer 服务端 4.1 整体框架 4.2 类的初始化 4.2.1 socket 4.2.2 bind 4.2.3 创建流式套接字 4.2.4 填充结构体 4.3 服务器的运行 4.3.1 rec…

数据结构 day3

目录 思维导图&#xff1a; 学习内容&#xff1a; 1. 顺序表 1.1 概念 1.2 有关顺序表的操作 1.2.1 创建顺序表 1.2.2 顺序表判空和判断满 1.2.3 向顺序表中添加元素 1.2.4 遍历顺序表 1.2.5 顺序表按位置进行插入元素 1.2.6 顺序表任意位置删除元素 1.2.7 按值进…

C/C++ xml库

文章目录 一、介绍1.1 xml 介绍1.2 xml 标准1.3 xml 教程1.4 xml 构成 二、C/C xml 库选型2.1 选型范围2.2 RapidXML2.3 tinyxml22.4 pugixml2.5 libxml 五、性能比较5.1 C xml 相关的操作有哪些5.2 rapidxml、Pugixml、TinyXML2 文件读取性能比较 六、其他问题6.1 version和 e…

【ARMv8/v9 异常模型入门及渐进 9.1 - FIQ 和 IRQ 打开和关闭】

请阅读【ARMv8/v9 ARM64 System Exception】 文章目录 FIQ/IRQ Enable and Disable汇编指令详解功能解释使用场景和注意事项 FIQ/IRQ Enable and Disable 在ARMv8/v9架构中&#xff0c;可以使用下面汇编指令来打开FIQ和 IRQ,代码如下&#xff1a; asm volatile ("msr da…

国内从事双臂机器人的团队

一、背景 随着人形机器人的发展&#xff0c;双臂协同操作得到了越来越多研究人员的关注。我自己也是做双臂机器人方向的&#xff0c;虽然通过看论文或刷知乎了解到国内有许多团队在做双臂机器人方向&#xff0c;但还没有系统的整理过&#xff0c;因此趁这次机会&#xff0c;好…

利用patch-package补丁,解决H5预览PDF时电子签章不显示问题

利用patch-package补丁&#xff0c;解决H5预览PDF时电子签章不显示问题 一、问题描述 在生产环境中&#xff0c;遇到了一个紧急的技术问题&#xff1a;用户在移动端H5页面上查看电子票时&#xff0c;PDF文件预览功能正常&#xff0c;但其中的电子签章未能正常显示。这一问题直…

CentOS6minimal安装nginx-1.26.1.tar.gz 笔记240718

CentOS6安装新版nginx 240718, CentOS6.1-minimal 安装 nginx-1.26.1.tar.gz 下载 nginx-1.26.1.tar.gz 的页面 : https://nginx.org/en/download.html 下载 nginx-1.26.1.tar.gz : https://nginx.org/download/nginx-1.26.1.tar.gz CentOS6.1已过期, 给它更换yum源, 将下面…

设计分享—国外网站设计赏析

今天还是给大家分享一些国外的网站设计案例&#xff5e; 蓝蓝设计是一家专注而深入的界面设计公司&#xff0c;为期望卓越的国内外企业提供卓越的大数据可视化界面设计、B端界面设计、桌面端界面设计、APP界面设计、图标定制、用户体验设计、交互设计、UI咨询、高端网站设计、平…

基于PHP+MYSQL开发制作的趣味测试网站源码

基于PHPMYSQL开发制作的趣味测试网站源码。可在后台提前设置好缘分&#xff0c; 自己手动在数据库里修改数据&#xff0c;数据库里有就会优先查询数据库的信息&#xff0c; 没设置的话第一次查询缘分都是非常好的 95-99&#xff0c;第二次查就比较差 &#xff0c; 所以如果要…

Redis 关于内存碎片的解决方法

今天生产机报内存爆满异常被叫过去查看问题&#xff0c;通过各种排除最终定位到了Redis的内存碎片的问题&#xff0c;这篇博客将详细介绍Redis内存碎片问题并给出最佳实践解决此问题。 Redis的内存碎片原理 先引用Redis官方的原话&#xff1a; 当键被删除时&#xff0c;Redis …

MYSQL中的库表建立基础操作

任务&#xff1a;新建产品库mydb6_product&#xff0c; 新建3张表如下: 一&#xff0c; employees表 &#xff08;1&#xff09;:id&#xff0c;整型&#xff0c;主键 &#xff08;2&#xff09;:name&#xff0c;字符串&#xff0c;最大长度50&#xff0c;不能为空 &#xff…

SQL每日一题:删除重复电子邮箱

题干 表: Person -------------------- | Column Name | Type | -------------------- | id | int | | email | varchar | -------------------- id 是该表的主键列(具有唯一值的列)。 该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。 编写解决方案 删除 所有重复…

SpringBoot框架学习笔记(三):Lombok 和 Spring Initailizr

1 Lombok 1.1 Lombok 介绍 &#xff08;1&#xff09;Lombok 作用 简化JavaBean开发&#xff0c;可以使用Lombok的注解让代码更加简洁Java项目中&#xff0c;很多没有技术含量又必须存在的代码&#xff1a;POJO的getter/setter/toString&#xff1b;异常处理&#xff1b;I/O…

C语言学习笔记[25]:循环语句for

for循环 for循环的基本语法 for(表达式1;表达式2;表达式3)循环语句; 表达式1为初始化部分&#xff0c;用于初始化循环变量的。 表达式2为条件判断部分&#xff0c;用于判断循环何时终止。 表达式3为调整部分&#xff0c;用于循环条件的调整。 例如用for循环实现打印1~10的数字…

HarmonyOS根据官网写案列~ArkTs从简单地页面开始

Entry Component struct Index {State message: string 快速入门;build() {Column() {Text(this.message).fontSize(24).fontWeight(700).width(100%).textAlign(TextAlign.Start).padding({ left: 16 }).fontFamily(HarmonyHeiTi-Bold).lineHeight(33)Scroll() {Column() {Ba…

object-C 解答算法:移动零(leetCode-283)

移动零(leetCode-283) 题目如下图:(也可以到leetCode上看完整题目,题号283) 解题思路: 本质就是把非0的元素往前移动,接下来要考虑的是怎么移动,每次移动多少? 这里需要用到双指针,i 记录每次遍历的元素值, j 记录“非0元素值”需要移动到的位置; 当所有“非0元素值”都移…